
Revisiting Email Forwarding Security under the Authenticated
Received Chain Protocol

Chenkai Wang
University of Illinois at Urbana-Champaign

USA
chenkai3@illinois.edu

Gang Wang
University of Illinois at Urbana-Champaign

USA
gangw@illinois.edu

ABSTRACT
Email authentication protocols such as SPF, DKIM, and DMARC
are used to detect spoofing attacks, but they face key challenges
when handling email forwarding scenarios. Recently in 2019, a new
Authenticated Received Chain (ARC) protocol was introduced to
support mail forwarding applications to preserve the authentica-
tion records. After 2 years, it is still not well understood how ARC
is implemented, deployed, and configured in practice. In this paper,
we perform an empirical analysis on ARC usage and examine how it
affects spoofing detection decisions on popular email provides that
support ARC. After analyzing an email dataset of 600K messages,
we show that ARC is not yet widely adopted, but it starts to attract
adoption from major email providers (e.g., Gmail, Outlook). Our
controlled experiment shows that most email providers’ ARC im-
plementations are done correctly. However, some email providers
(Zoho) have misinterpreted the meaning of ARC results, which can
be exploited by spoofing attacks. Finally, we empirically investigate
forwarding-based “Hide My Email” services offered by iOS 15 and
Firefox, and show their implementations break ARC and can be
leveraged by attackers to launch more successful spoofing attacks
against otherwise well-configured email receivers (e.g., Gmail).

CCS CONCEPTS
• Security and privacy→ Security protocols.

KEYWORDS
Email Forwarding Security; Spoofing Attack; ARC

ACM Reference Format:
Chenkai Wang and Gang Wang. 2022. Revisiting Email Forwarding Security
under the Authenticated Received Chain Protocol. In Proceedings of the
ACM Web Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event,
Lyon, France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3485447.3512228

1 INTRODUCTION
Email spoofing is commonly used in phishing and social engineer-
ing attacks where the attacker impersonates the sender address of a
trusted entity [16, 24]. To prevent and detect email spoofing, various

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512228

email authentication protocols (e.g., SMTP extensions) have been
proposed and standardized in the past decades including SPF [11],
DKIM [5], and DMARC [12].

While SPF, DKIM, and DMARC can work together to detect
spoofing, they still face challenges to handle mail forwarding sce-
narios. Forwarding is a key mechanism to enable applications like
mailing lists. More recently, to protect the privacy of personal email
addresses, forwarding-based email relay services are introduced.
This includes the most recent “Hide My Email” feature in iOS 15,
which allows users to use a random iCloud alias to register online
accounts without revealing their true email addresses [2]. During
forwarding, emails are sent through one or multiple forwarders
while preserving the original sender’s information. During this
process, however, key authentication information cannot be carried
over, and thus it often leads to authentication failures [9].

To preserve the authentication records during mail forwarding,
a new protocol called Authenticated Received Chain (ARC) [1] was
published under RFC8617 in July 2019. ARC allows an intermediate
mail server to sign the message’s original authentication results so
that even when SPF or DKIM fails at the receiver end, the receiver
can still check the chain of authentication records to determine
whether the message can be accepted. While it has been two years
after the initial introduction of ARC, little is known about how ARC
is adopted, implemented and configured in practice. Most existing
studies have been focused on the more established protocols such
as SPF, DKIM, and DMARC [6, 8, 10, 21, 23], and this paper seeks
to fill in the gaps.

Our Questions. We focus on email forwarding scenarios and per-
form an empirical analysis of the real-world ARC implementations.
We seek to answer the following questions. First, how widely are
ARC adopted among email providers? Second, is the ARC protocol
correctly implemented and deployed? Third, whether and how do
email providers use ARC information to make spoofing detection
decisions? To answer these questions, we gather and analyze email
datasets, and design controlled experiments to test real-world email
services as well as the recently introduced “HideMy Email” services.
Our analysis leads to several key findings.

Analysis and Findings. First, we find the ARC is not widely
adopted yet. Unlike SPF/DMARC, the adoption of ARC is not di-
rectly measurable using public DNS records [10, 23]. Instead, we
work with an industry collaborator to analyze a dataset of 674,564
email headers (collected in 2020 and 2021) to look for signs of ARC
adoption. In 2020, out of 10,740 unique email domains analyzed,
ARC domain keys are only found in 6 sender/forwarder domains.
The observation is similar in the 2021 data. Then we analyze pop-
ular public email providers and find that Gmail, Outlook, Zoho,
Fastmail, and Pobox have adopted ARC. As major email providers

https://doi.org/10.1145/3485447.3512228
https://doi.org/10.1145/3485447.3512228
https://doi.org/10.1145/3485447.3512228

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Chenkai Wang and Gang Wang

such as Gmail start to adopt ARC, we do not rule out the possibility
that ARC’s adoption rate would increase in the future.

Second, we find that ARC results have different impacts on differ-
ent email providers for spoofing detection. Specifically, we design
and run a series of controlled experiments by sending spoofing
emails to our own accounts within Gmail, Outlook, Fastmail, and
Zoho.We emulate the scenario where an attacker aims to spoof a tar-
get domain that is protected by DMARC. By forging an ARC chain
(with authentication results set to “pass”), we examine how email
providers would make decisions. We find that Gmail responded
correctly under all conditions; Fastmail and Outlook do not always
follow the DMARC policy but they are also not influenced by ARC.
On Zoho, however, we observe that a seemingly valid ARC chain
(from an untrusted party) can help spoofing emails to get into their
inbox and remove warnings.

Third, during our experiment, we do not find major implemen-
tation errors in the ARC protocol in Gmail. However, we find that
Outlook, Zoho and Fastmail do not seal the DKIM signature in
ARC sets when sending/forwarding emails (against RFC8617 rec-
ommendations [1]). After analyzing a few other open-sourced ARC
implementations, we find several issues in the existing OpenARC
codebase and the ARCmodule of Mailman3 (a mailing list manager).

Finally, we analyze email relay services including iCloud “Hide
My Email” and Firefox Relay, and find that they implement the
forwarding in a way that would break the ARC chain. Their current
designs do not perform careful authentication and also take away
the ability of checking authenticity of the original senders from
the end receivers. Through controlled experiments, we show that
attackers can leverage their relay services to conduct spoofing
attacks against Gmail, successfully sending spoofing emails into
Gmail’s inbox (that would be otherwise rejected).

Contributions. In summary, we have three key contributions:

• First, we analyze a large email dataset and popular email providers
to understand ARC adoption in practice.

• Second, we run controlled experiments to examine how email
providers use ARC results to make spoofing detection decisions.
The results reveal potentially incorrect interpretations of ARC
results from email providers.

• Third, we analyze “Hide My Email” services to understand how
their email forwarding are implemented. We show the current
implementations can be used to assist spoofing attacks.

As ARC is going through the trial phase in practice, the main
contribution of our work is to empirically examine the gaps between
the protocol specification and real-world executions, and point out
common mistakes when using ARC results to make decisions.

2 BACKGROUND AND MOTIVATION
2.1 Email Spoofing Attack
Simple Mail Transfer Protocol (SMTP) [18] is the standard protocol
for email delivery over the internet. Introduced in 1982, SMTP does
not include any built-in security features. As a result, adversaries
can spoof an arbitrary sender address to send emails on their behalf.
Suppose the impersonation target is “info@bank.com”, there are
twoways to implement spoofing. First, the adversary canmodify the
“MAIL FROM” field in the SMTP protocol and use “info@bank.com” as

the sender address. This address, by default, will also be inserted as
the “Return-Path” and “From” in the email header. “Return-Path”
determines the destination address of the reply message, and the
“From” address will be eventually displayed on the user interface (UI)
of the receiver’s email client. Second, alternatively, the adversary
can directly modify the “From” field in the email header [20].

2.2 Security Extensions against Spoofing
In the past decades, security extensions have been introduced to
defend against email spoofing attacks:

SPF. Sender Policy Framework (SPF) [11] uses IP addresses to au-
thenticate email senders. Using the same example above, to prevent
spoofing, administrators of “bank.com” can publish a DNS record
to declare which IP addresses are valid to send emails on their
behalf. When the receiving server receives an email whose “MAIL
FROM” address is claimed to be “bank.com”, the server can query
bank.com’s DNS record to check if the declared IP address matches.

DKIM. DomainKeys Identified Mail (DKIM) [5] is a public-key-
based protocol. The composer of the email will sign the (selected)
header fields and the message body with its domain key (e.g., a pri-
vate key associated with “bank.com”). The generated signature will
be attached to the email header. When a receiving server receives
this email, the server can query the DNS to obtain the public key
of “bank.com” to verify the signatures. Compared with SPF (which
only focuses on the authenticity of the sender), DKIM additionally
provides an integrity check on the email message.

DMARC. Domain-based Message Authentication (DMARC) [12]
is designed to work together with SPF and/or DKIM to holistically
verify the sender authenticity, handle authentication failures, and
report results back to senders. One of the key contributions of
DMARC is that it fixes a spoofing vulnerability of SPF and DKIM.
More specifically, SPF only inspects “MAIL FROM” (for email delivery)
but does not consider the “From” field in the header (the address
that will be displayed to users on the UI). As a result, the attacker
may use an “attacker.com” (under its control) as the “MAIL FROM”
to pass SPF, while setting the “From” field as “info@bank.com”
to fool users [9]. Similarly, to bypass DKIM, the attacker can use
its own domain key associated with “attacker.com” to sign the
message while setting the “From” field as “info@bank.com” [9].
DMARC fundamentally solves this problem by requiring all domain
identifiers to be aligned, including the domain name of the DKIM
key, “MAIL FROM”, and the “From” in the header.

Recent measurement shows the adoption rates of SPF, DKIM,
and DMARC protocols have been increasing, but there are still
a large number of domain names that have not adopted (or only
partially adopted) them [6, 8, 10, 15, 23].

2.3 Email Forwarding and ARC
Unfortunately, existing security extensions are not working well
with email forwarding [9]. Email forwarding is a key mechanism
to enable mailing list functions, and it is also used by individuals
who need to automatically forward emails from one email provider
to another (for convenience or privacy). Figure 1 illustrates an
email forwarding process. Suppose f.com is a mailing list, when

Revisiting Email Forwarding Security under the Authenticated Received Chain Protocol WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

1

s.com

Sender Client Receiver Client

alex@s.com bob@r.com

Sender

Server 2

f.com

Forwarder

Server 3

r.com

Receiver

Server 4

SMTP SMTP

Figure 1: The email forwarding process.

alex@s.com sends an email to the mailing list, f.com will automat-
ically forward the message to all its subscribers (bob@r.com is one
of the subscribers). While the receiver Bob still sees “alex@s.com”
is displayed as the sender, it is more difficult to verify the sender
authenticity.

First, SPF is broken bymail forwarding. From the receiver r.com’s
perspective, the immediate sending server is f.com whose IP ad-
dress will not match with the original sender s.com’s SPF record.
Forcefully modifying the “Return-Path” to be “f.com” can pass
SPF but will cause DMARC failure due to identifier misalignment.

Second, DKIM has a chance to be broken too as mailing lists
often need to modify the original message. A common modification
is to add a footer to include the name of the mailing list and/or a
link for unsubscription. Some mailing lists also help to convert all
hidden hyperlinks into displayed links in the email body. Due to
the modification, the original DKIM signature becomes invalid and
thus DMARC will fail.

Authenticated Received Chain (ARC) Overview. ARC proto-
col (RFC8617) [1] was recently published in 2019. ARC allows an
intermediate mail server (a mailing list or a forwarding service) to
sign the message’s original authentication records. In this way, the
receiving server can validate the message even when the email’s
SPF or DKIM fails due to the intermediate server’s processing. ARC
creates a chain of authentication records when an email message is
forwarded by multiple intermediate servers, as shown in Figure 2.
During each forwarding hop, an “ARC Set” is added to the chain.
This is done by (1) validating the records in the previous ARC Sets
(validation process), and (2) signing any new changes introduced
to the email before sealing the entire chain (sealing process).

ARC Set is the building block of the chain. Each ARC Set has an
instance number (i.e., sequence number) which increases by 1 after
each ARC-participating hop. It also contains three header fields:
• ARC-Authentication-Results (AAR) header holds the authen-
tication results (SPF, DKIM, DMARC) produced by the current
server at the message arrival time. This allows the final receiver
to trace the authentication results at each hop, especially the first
hop that involves the original sender.

• ARC-Message-Signature (AMS) header contains the signature
of selected email headers (excluding ARC headers) and the mes-
sage body signed by the current server.

• ARC-Seal (AS) header contains a signature for all “ARC-” header
fields as a whole (to preserve the integrity of the ARC Chain). It
also contains the current “chain validation status” (“cv”).

In the following, we use Figure 2 to explain how the 𝑖𝑡ℎ hop server
performs the validation process and the sealing process.

ARC Validation Process. When the 𝑖𝑡ℎ hop server receives an
incoming message, it needs to validate the ARC Sets from previous
hops. It first collects all of the previous ARC Sets on the chain,
and checks their ARC-Seal (AS) headers. If any of the previous
AS headers has the chain validation status (cv) marked as “fail”,
it means the chain has already failed, and thus there is no point

AAR (i) = {SPF, DKIM, DMARC auth. result (ith hop)}

AMS (i) = {Signature of current msg body and headers}

AS (i): = {Signature of ARC chain, chain validity status}

AAR (i-1)

AMS (i-1)

AS (i-1)

...
AAR (1)

AMS (1)

AS (1)

ith ARC Set(i-1)th ARC Set1st ARC Set

Figure 2: ARC chain structure. Each ARC set contains
an ARC-Authentication-Results (AAR), an ARC-Message-
Signature (AMS), and an ARC-Seal (AS).

to continue the process. Also, if there is any missing ARC Set on
the chain (based on instance numbers), the validation process will
return a “fail” status immediately. Finally, the server will check the
ARC-Message-Signature (AMS) from the most recent (𝑖 − 1)𝑡ℎ hop
to verify the integrity of the non-ARC headers and the email body.
If all of the above integrity checks are successful, the current chain
validation status is set to “cv=pass” (“fail” otherwise).

Sealing Process. If this server (e.g., a mailing list) needs to modify
the email message (e.g., adding a footer), the modification must be
done before the sealing process. To perform sealing, the server first
prepares the ARC-Authentication-Results (AAR) header by storing
the current 𝑖𝑡ℎ hop’s authentication results for SPF, DKIM, and
DMARC to its AAR header. Second, the server prepares the ARC-
Message-Signature (AMS) header by signing the email body and
other non-ARC headers. Third, the server prepares the ARC-Seal
(AS) header by collecting every ARC-* header in the current email
(including the new AAR and AMS generated above), sorting them
in an ordered list, and signing its hash with this 𝑖𝑡ℎ hop server’s
private key. Also, this ARC-Seal (AS) header includes the current
chain validation status (cv) produced by the validation process above.

Checking ARC at the Receiver End. From the final receiver’s
point of view, if SPF, DKIM, or DMARC fails at the last hop (e.g,
due to message modification during forwarding), the receiver can
then check the ARC Sets. It can use the ARC chain to trace back to
the SPF/DKIM/DMARC authentication results at the first hop when
authenticating the original sender. Also, email modifications can be
analyzed along the chain using the AMS headers. As pointed out by
the protocol specification and other analysis articles [1, 13], ARC
has an important assumption, that is, the forwarders are trusted
(i.e., they follow the ARC protocol). In this paper, we will examine
how the ARC protocol is interpreted and implemented in practice.

3 PROGRESS OF ADOPTION
We start by exploring the real-world adoption of ARC among email
providers. Determining whether a given mail domain has adopted
ARC is challenging using existing measurement methods. Prior
works have examined the adoption rates of SPF and DMARC by
scanning their records in the public DNS [8, 10, 15, 23]. In compar-
ison, DKIM’s adoption rate is more difficult to measure because
querying a domain’s DKIM key requires knowing the “selector”
information (which is not public knowledge). A recent work over-
comes this challenge by guessing common selectors used for DKIM
keys [23]. ARC also hosts its domain key using DNS with a similar
mechanism like DKIM (ARC may even use the same DKIM key).
This creates a problem: even if we find out a given domain hosts
a domain key on DNS, it does not mean the domain has adopted
ARC (i.e., it could be a DKIM key). As such, to examine whether a

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Chenkai Wang and Gang Wang

Count Domain Key Key Length
94,580 arcselector9901._domainkey.microsoft.com 2048 bit
38 arc-20160816._domainkey.google.com 1024 bit
7 arc-20200618._domainkey.improvmx.com 1024 bit
4 arc-201807._domainkey.one.com 1024 bit
2 zohoarc._domainkey.zohomail360.com 1024 bit
1 zohoarc._domainkey.zohomail.eu 1024 bit
1 key201809._domainkey.1-hostingservice.com 1024 bit

Table 1: ARC keys found in 407,357 email messages in the
2020 dataset. The keys are ranked by the number of associ-
ated messages.

given domain has adopted ARC, we need to collect email messages
sent/forwarded by this domain and analyze the header informa-
tion. We perform such analyses with (1) an email dataset obtained
from an industry partner (with IRB approval); and (2) public email
services where we can register accounts to send/receive emails.

3.1 Analyzing an Email Dataset
We analyze an dataset (674,564 email headers) working with our
collaborator atmailsac.com (a disposable email service). The dataset
contains two parts collected from 2020 and 2021, respectively.

Dataset 2020. This dataset contains the header information for
407,357 incoming email messages sent/forwarded to mailsac.com
in November 2020. Among the 407,357 email headers, we observe
10,740 unique sender domain names (that send/forward emails to
mailsac.com). Among them, 360,542 (88.5%) emails contain DKIM
keys and only 94,633 (23.2%) emails contain ARC keys. After re-
moving duplicated keys, we find a total 6,189 unique DKIM keys,
and only 7 unique keys for ARC. This suggests that ARC adoption
rate is far lower than that of DKIM.

Table 1 shows the 7 ARC keys we find, used by 6 different ser-
vice providers, including Microsoft Outlook, Google Gmail, Zoho,
one.com (a web hosting service), improvmx.com (an email alias
service), and e-goi.com (a marketing service). The vast majority of
ARC-enabled messages are either sent from or forwarded through
Microsoft (Outlook).

Dataset 2021.We use a more recent dataset collected in November
2021 to double check the results. This set contains 267,207 message
headers, from which we find 11,277 unique sender domain names.
Among them, 88.7% of the messages contain DKIM keys, and 13.4%
of the messages contain ARC keys. While our dataset is not neces-
sarily representative (e.g., it is collected from a single email service),
the results can at least indicate that ARC is not widely adopted.

3.2 Analyzing Email Providers
To complement the above analysis, we further examined the ARC
adoption in popular email providers.We considered 13 email providers
that allow us to create accounts for running experiments (see Table 4
in the Appendix). Most of them are free/public services (e.g., Gmail,
Yahoo Mail) and two are paid services (i.e., Fastmail, Pobox). Given
an email provider, we first register an account with it. Then we
try to send and receive ARC-enabled messages using this account.
We also try to set up email forwarding within the email provider.
Finally, we check whether they perform ARC sealing and validation
based on the header information of the received messages.

We find that most of the email services do not have any support
for ARC (see Table 4). For free services, only Outlook, Gmail, and
Zoho support both ARC validation and sealing during forwarding.
Note that Gmail does not support ARC sealing when sending out
emails. Fastmail is a commercial email service and has full ARC
support. While Pobox supports ARC, it is a forwarding-only service
for users to create email aliases and does not provide email inbox
services. Overall, the result is consistent with Section 3.1 that ARC
is not yet widely supported yet.

3.3 Open-source ARC Implementations
We suspect that the quality of readily available open-source ARC
implementations may have affected the adoption of ARC. As such,
we analyzed existing open-source ARC implementations that act as
plugins (or “milters”) in mail transfer agents (MTA) suits and those
integrated in popular Mailing List Managers. We find that certain
projects (e.g., OpenARC andMailman3) have implementation errors
or design choices against the RFC recommendations. Due to the
space limit, we report the more detailed results in Appendix A.

3.4 Result Summary
Our investigation of an email dataset and popular email providers
shows that most email providers have not adopted ARC (except for
Gmail, Outlook, Zoho, and Fastmail). We also find implementation
errors in certain open-source ARC implementations.

4 ARC IMPACT ON SPOOFING
Given ARC has been adopted by popular email services (e.g., Gmail,
Outlook, Fastmail, and Zoho), we run experiments to understand
how ARC is used, and how ARC results affect their decisions on
spoofing emails. In these experiments, the adversary pretends to be
a forwarding server to interact with these email providers (who act
as receivers). By fabricating the ARC sets (i.e., the authentication
records), the adversary tries to convince the email providers that
the spoofing email is forwarded from the original sender and is
authentic. Recall that ARC does not address the issue of untrusted
forwarders [1, 13]. We use this experiment to check whether real-
world email providers have interpreted ARC correctly.

4.1 Experiment Setup
Suppose we try to spoof a target domain name (e.g., t.com), the
adversary sets up a mail forwarding server f.com to send a spoofing
email to the testing email provider (e.g., Gmail). If t.com has already
set up SPF/DKIM and DMARC, attempts of directly spoofing t.com
will be detected by Gmail. Instead, the adversary tries to use ARC to
convince the receiver that any authentication failure at the receiver
end is due to forwarding, and the original authentication record in
the ARC Set (AAR) shows that the original sender t.com has been
correctly verified. In this attack, there is no real sender sending
emails to the attacker at f.com—the attacker will simply spoof
the email and fabricate the ARC Sets. Our goal is to understand
whether the email receiver (Gmail) would take the ARC results into
consideration when making spoofing detection decisions.

To run this experiment, we first register accounts at the testing
email providers. All of the emails are sent to these accounts under
our control. Then we test different setups for the choices of the

Revisiting Email Forwarding Security under the Authenticated Received Chain Protocol WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Setup Spoof DMARC=“none” Spoof DMARC=“quarantine” Spoof DMARC=“reject”
SPF, DKIM, ARC zoho fastmail gmail outlook zoho fastmail gmail outlook zoho fastmail gmail outlook
SPF=0, DKIM=0, ARC=0 [#] # G# G# G# [G#] G# G# G#
SPF=0, DKIM=0, ARC=1 # # G# G# # G# [G#] G# G# G#
SPF=0, DKIM=1, ARC=0 [#] # G# G# G# [G#] G# G# G#
SPF=0, DKIM=1, ARC=1 # # G# G# # G# [G#] G# G# G#
SPF=1, DKIM=0, ARC=0 # # G# G# G# [G#] G# G# G#
SPF=1, DKIM=0, ARC=1 # # G# G# # G# [G#] G# G# G#
SPF=1, DKIM=1, ARC=0 # # G# G# G# [G#] G# G# G#
SPF=1, DKIM=1, ARC=1 # # G# G# # G# [G#] G# G# G#

Table 2: The spoofing experiment results.#=inbox;G#=spam/junk folder; =blocked/discarded; [] means a warningmessage is
shown on the email client. The spoofing target domains each has different DMARC policies: “none”, “quarantine”, and “reject”.
For the experiment setup, DMARC will fail for all cases (due to spoofing). SPF is set to either pass (1) or fail (0). DKIM is set
to either pass (1) or fail (0). For ARC, the attacker can choose to not include any ARC set (0), or add an ARC Set with falsified
authentication records (1).

target domain t.com, and the SPF and DKIM configurations during
forwarding. Since we focus on spoofing detection (which only con-
siders sender identity), we use benign email content for our testing
messages (i.e., the content is considered “benign” by all tested email
providers; verified by non-spoofing experiments).

Target Domain Names. Prior works already show that domains
that have not adopted SPF/DKIM/DMARC can be successfully
spoofed [6, 10, 23]. In this experiment, we only consider target
domains (t.com) that have adopted SPF+DMARC, DKIM+DMARC,
or both. t.com may set different DMARC policies to instruct the
receiver how to handle an email when the authentication fails. For
example, “none” means t.com does not have any instruction and
it is up to the receiver to make a decision; “quarantine” means the
receiver should put the email into a spam folder; “reject” means
the receiver should directly discard the email when the authentica-
tion fails. In our experiment (see Table 2), we select three domain
names with different DMARC policies: illinois.edu (“none”),
usenix.org (“quarantine”), and nicehash.com (“reject”). Here, we
choose to spoof real-world domain names (instead of freshly regis-
tered domain names) to mimic realistic attack scenarios1.

SPF Setting. For SPF, we test two conditions where SPF is either
pass (1) or fail (0). First, if the attacker uses the attacker’s f.com
as the “MAIL FROM”, then SPF can pass, but DMARC will fail due
to identifier misalignment (see Section 2.3). Second, if the attacker
modifies the “MAIL FROM” to be aligned with the “From” field in the
email header (both are t.com), then SPF will fail due to t.com’s SPF
record (see Section 2.2). In both cases, DMARC will fail.

DKIM Setting. We have two conditions for DKIM where DKIM is
either pass (1) or fail (0). First, if the attacker inserts its own DKIM
signature by signing the message, DKIM will pass but DMARC will
fail due to identifier misalignment (see Section 2.3). Second, if the
attacker does not insert any DKIM signature, the original DKIM
will fail (due to spoofing). In both cases, DMARC will fail.

ARC Setting. For ARC, we have two conditions. Condition ARC=0
means the attacker does not include any ARC record (baseline).
Condition ARC=1 means the attacker adds one ARC Set (i=1) in
the chain sealed with a falsified authentication record “spf=pass,

1During our pilot experiments, we also tested with freshly registered domain names,
and the conclusion was the same.

dkim=pass, dmarc=pass”. This falsified record tries to convince the
receiver that the original sender (t.com) is correctly authenticated
before the forwarding.

4.2 Experiment Results
Table 2 shows the results. We consider Gmail, Zoho, Fastmail, and
Outlook for this experiment. Pobox is not applicable because it
does not have an inbox (forwarding only). Under all scenarios, the
spoofing target t.com has a DMARC record (with different DMARC
policies). By manually checking the results, we confirm that all four
email providers have correctly mark DMARC “fail” under these
scenarios. Even so, Table 2 shows that these email providers handle
the spoofing emails differently, and ARC has influenced the decision
of certain providers.

DMARC policy=“none”. When the target domain’s DMARC pol-
icy is “none”, it means the email receivers can make their own
decisions on how to handle the emails (that have failed DMARC).
In this case, we observe that Gmail and Outlook put the spoofing
emails into the spam folder. However, Fastmail and Zoho put the
spoofing email into user’s inbox. More importantly, on Zoho, the
falsified ARC set (ARC=1) has boosted Zoho’s trust toward the
spoofing email. For example, when SPF fails (SPF=0), Zoho will
display a warning message on the email client UI to warn users
that the email sender is not verified. However, by using an ARC
Set, we can successfully remove the warning message.

A closer inspection shows that Zoho has correctly marked all
the decisions for SPF and DKIM. Also, Zoho has correctly marked
the DMARC authentication results as “fail” for all cases2. A likely
explanation is that Zoho has checked the ARC chain and looked
into the ARC Set (i=1) for the authentication records of the original
sender (t.com). Recall that the attacker has falsified this record as
“spf=pass, dkim=pass, dmarc=pass”, which may have influenced
Zoho’s decision (i.e., remove the warning message).

DMARC policy=“quarantine”. When the target domain has a
DMARC policy of “quarantine”, it means the receiver is supposed

2This observation is different from a recent analysis performed in 2020 [21], which
shows Zoho has an ARC implementation error that leads to incorrect DMARC “pass”
for forwarded emails. As of October 2021, we do not observe such an implementation
error anymore as DMARC is marked as “fail” correctly by Zoho. It is likely that Zoho
has fixed that error in the past year.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Chenkai Wang and Gang Wang

to put the message into the spam folder when authentication fails.
We find that Fastmail, Outlook, and Gmail have followed the policy.
Gmail even added a warning message explaining why the email is
put into the spam folder. However, Zoho again shows the influence
of ARC. Without ARC (ARC=0), Zoho will directly drop the mes-
sage without even putting it into the spam folder due to the failed
DMARC. However, with ARC (ARC=1), even with a failed DMARC,
Zoho consistently puts the spoofing email into user inbox without
showing the warning.

DMARC policy=“reject”.When the target domain has a DMARC
policy of “reject”, the receiver is expected to directly drop the mes-
sage when authentication fails. Our results show that Gmail has
respected the reject policy. However, Fastmail and Outlook still keep
the spoofing email in the spam folder (i.e., not rigorously follow-
ing the policy). Interestingly, Zoho also correctly follow the reject
policy this time. Based on the error code we received, it seems that
DMARC rejection happened at the SMTP receiving stage (without
reaching the next phase to check ARC yet).

Other Problems Observed. We find a separate problem with the
ARC sealing process in Zoho, Outlook, and Fastmail (which is not
related to the above experiment). When these services are acting as
the sender/forwarder, their seals do not include the DKIM signature
in AMS. This is a similar problem with Mailman3 described in
Appendix A. As DKIM signatures are not sealed by ARC, their
integrity cannot be protected. Gmail is the only service that seals
with the DKIM signature header in AMS.

4.3 Result Summary
Overall, our experiment shows that in most cases, a spoofing email
with a falsified ARC Set does not necessarily change the decisions
of email providers at the receiving end. However, for Zoho, even
though its DMARC authentication is correctly performed, the pres-
ence of ARC=“pass” still increased their trust toward spoofing
emails for certain conditions (e.g., when DMARC policy is not
“reject”). While this is not an implementation error, it appears that
Zoho has misinterpreted the meaning of ARC=“pass”. Fundamen-
tally, ARC cannot prevent malicious forwarders from deviating
from the ARC protocol and inserting fabricated authentication
records. Instead, ARC results should only be used to audit a failed
DMARC for trusted forwarders (e.g., a mailing list on the receivers’
allowlist, a high reputation forwarding service). Further discussion
is presented in Section 6.

5 “HIDE MY EMAIL” SERVICES
Finally, we investigate an email forwarding scenario for privacy-
preserving purposes. In September 2021, iOS 15 introduces a new
privacy feature called “Hide My Email” (or HME), which is devel-
oped based on the concept of mail forwarding [2]. It allows users
to generate random email aliases (e.g., random_name@icloud.com)
to register accounts with online services (e.g., online social net-
works) without revealing their true personal email address (e.g.,
true_name@gmail.com). Whenever the email alias receives a mes-
sage, iCloud will automatically forward the message to the user’s
true email address (e.g., at Gmail). This also allows users to create a

a.com

Attacker

Server

random_name@icloud.com

iCloud

HME

SMTP

real_name@gmail.com

Gmail

Server

SMTP

From: “Trusted Name”

<trusted.name_at_target_com_randomstring@icloud.com>

Spoofing

<trusted_name@target.com>

Inbox

Figure 3: Spoofing attack via iCloud’s “Hide My Email”
(HME) service. The spoofing emails can reach the inbox of
the receiver at Gmail.com.

large number of email alias to reduce the linkability of their identi-
ties across online platforms (and even password dumps). A similar
service is offered by Firefox too called Firefox Relay [7].

In the following, we conduct a simple experiment to investi-
gate how these two email relay services implement the forwarding
process, and whether ARC/DKIM is correctly used.

5.1 Attacking via iCloud HME
We use iCloud’s Hide My Email (HME) as an example to explain our
experiment process. Figure 3 shows the setup. We set up an attacker
mail server at a.com and spoof a target identity under the target
domain, e.g., “trusted_name@target.com”. The spoofing emails
are sent to the victim users whose real email at Gmail is hidden
behind iCloud’s HME. The attacker will simply send the spoofing
email to the victim’s alias at random_name@icloud.com, which will
be automatically forwarded to real_name@gmail.com. The config-
urations of the attacker’s SPF, DKIM, ARC, and the spoofing target
domains are the same with the previous experiment in Section 4.1.

More Successful Attacks. Table 3 shows the experiment results.
As a comparison baseline, we directly run the spoofing attack with-
out using iCloud HME to send emails to the Gmail receiver (same
attack described in Section 4.1). Gmail has either put the spoofing
emails into the spam folder or directly discarded the emails without
showing them to users.

When we run the attack via iCloud HME, the spoofing attack
becomes more effective. For instance, when the target domain’s
DMARC policy is “none”, all emails get into the Gmail inbox. When
the target domain’s DMARC policy is “reject”, we find that the
spoofing emails can no longer reach the inbox. A closer examina-
tion shows that the emails are dropped by iCloud (which never
reached Gmail) as iCloud follows the target domain’s DMARC pol-
icy. The interesting part is when the target domain’s DMARC policy
is “quarantine”. Since iCloud HME is a forwarding service, it does
not store the message and thus cannot accommodate “quarantine”.
The email needs to be either forwarded or rejected by iCloud HME.
As a result, iCloud decides to forward it through even though the
DMARC fails. Eventually, all of these emails enter the Gmail in-
box. Also, the warnings that exist in the baseline experiment are
removed.

BrokenChain of ARC.We examine the email forwarding process
of iCloud HME, and have two key observations.

Revisiting Email Forwarding Security under the Authenticated Received Chain Protocol WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Setup Direct Spoofing (baseline) Attack via iCloud HME Attack via Firefox Relay
SPF, DKIM, ARC none quarantine reject none quarantine reject none quarantine reject
SPF=0, DKIM=0, ARC=0 G# [G#] # # # # #
SPF=0, DKIM=0, ARC=1 G# [G#] # # # # #
SPF=0, DKIM=1, ARC=0 G# [G#] # # # # #
SPF=0, DKIM=1, ARC=1 G# [G#] # # # # #
SPF=1, DKIM=0, ARC=0 G# [G#] # # # # #
SPF=1, DKIM=0, ARC=1 G# [G#] # # # # #
SPF=1, DKIM=1, ARC=0 G# [G#] # # # # #
SPF=1, DKIM=1, ARC=1 G# [G#] # # # # #

Table 3: The spoofing attack results against Gmail as the receiver. We compare the baseline attack (directly spoofing)
with the attack via iCloud’s “Hide My Email” (HME) and the attack via Firefox Relay. #=inbox; G#=spam/junk folder;
 =blocked/discarded; [] means a warning message is shown on the email client. The spoofing target domains each has dif-
ferent DMARC policies: “none”, “quarantine”, and “reject”. For the experiment setup, DMARC will fail for all cases (due to
spoofing). SPF is set to either pass (1) or fail (0). DKIM is set to either pass (1) or fail (0). For ARC, the attacker can choose to
not include any ARC set (0), or add an ARC Set with falsified authentication records (1).

First, iCloud does not perform any ARC operation (no validation
or sealing). For emails that have eventually reached Gmail, the
ARC Set inserted by the attacker is still preserved after passing
through iCloud. Second, iCloud makes changes to the email. As
shown in Figure 3, instead of forwarding the received message as
it is, iCloud has replaced the original “From” in the header which is
“trusted_name@target.com” with a reformatted sender address
as shown in Figure 3. Note that the new “From” address has the
domain name of icloud.com. The advantage is that this forces
identifier alignment between “MAIL FROM” and “From” which helps
the email to bypass DMARC. However, this also breaks the ARC Set:
without re-sealing the modified header, the existing AMS signature
is no longer valid (due to the above header modification). As a
result, when Gmail receives this email, it marks “arc=fail” due to
the broken AMS signature.

5.2 Attacking via Firefox Relay
We run a similar experiment for Firefox Relay. Table 3 shows even
stronger results.

First, regardless of the target domain’s DMARC policies, all spoof-
ing emails enter Gmail’s inbox without raising any warnings. The
result indicates that Firefox Relay does not perform any authenti-
cation (e.g., DMARC) or take any actions other than forwarding all
the emails through.

Second, like iCloud HME, Firefox Relay also breaks ARC, but in a
different way. Firefox Relay completely removes all authentication-
related headers (including ARC Sets) from the original email and
converts the original plain text email into an HTML format. Then
Firefox sends the newly formatted email to the receiver (Gmail). The
email is essentially recomposed, and the “From” field is formatted as
“‘trusted_name@.target.com [via Relay]’ <noreply@relay.
firefox.com>” In this way, the original sender address is formatted
as the displayed “sender name” and the new “From” domain name
is set to relay.firefox.com. This again helps to align the SPF
identifiers to pass DMARC.

5.3 Result Summary
In summary, both iCloud HME and Firefox Relay have made a
similar decision to modify the emails. This improves deliverability

of the messages because: (1) the IP addresses of iCloud and Firefox
have a high reputation, and (2) changing the “From” domain to
the domain names of the relay helps to pass DMARC to get the
emails accepted. The problem is, this modification can be exploited
by attackers. As shown in our experiment, spoofing emails that
were previously blocked by Gmail are nowmostly accepted without
raising warnings. Also, iCloud modifies emails without re-sealing
the ARC headers and Firefox completely removes all authentication
headers. This takes away the opportunity from the final receiver
(e.g., Gmail) to check the authenticity of the original email.

As a relay service, high deliverability is highly desired. The
question is, can they maintain high deliverability while preserving
the chain of authentication records? We believe this is a largely
reachable goal. (1) iCloud/Firefox relay should perform their own
authentication and drop emails with failed DMARC (when sender
policy=“reject”). (2) The relay should perform ARC validation and
sealing to maintain the integrity of the ARC chain. (3) By default,
the relay should not modify the original email3.

For such a relay, if the incoming email has DKIM, because of (3),
the DKIM signature will still be valid when the email reaches the
receiver, which makes DMARC pass (i.e., no harm on deliverability).
If the incoming email does not have DKIM but has SPF, the above
recommendations might hurt deliverability when (a) the sender’s
DMARC policy is “reject”/“quarantine” and (b) SPF=“pass” at the
relay. Under this condition, the relaymay considermodifying “From”
to ensure deliverability. In this case, because SPF is “pass” at the
relay (i.e., email authenticity is verified), modifying “From” does
not introduce additional risks to the receiver. If the incoming email
does not have DKIM or SPF, the above recommendations also do
not hurt deliverability.

6 DISCUSSION
6.1 Ethical Considerations
We have taken active steps to ensure research ethics. Our study
has an approved IRB protocol. All spoofing emails sent in our ex-
periments have been sent to accounts under our control. There

3If the relay modifies the original email, it is suboptimal. This is because the receivers
would lose the opportunity to verify the original sender themselves, and have to put
extra trust to the relay—trusting it can correctly verify the original sender.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Chenkai Wang and Gang Wang

are no other users’ accounts involved in these experiments. We
are in the process of sharing our research findings to related par-
ties (e.g., Zoho, iCloud, Firefox, Mailman3) to help improve their
implementations.

6.2 Benefits and Problems of ARC
Overall, our results show that major email providers (e.g., Gmail and
Outlook) have correctly implemented the ARC protocol. However,
some providers (Zoho) might have misinterpreted the meaning
of “ARC=pass” (their ARC validation is implemented correctly).
Fundamentally, ARC is a chain of signed authentication results,
which allows the email receiver to audit potential DMARC failures.
However, there is an implicit assumption that the receiver needs to
trust the “good faith” of forwarders, i.e., good-faith forwarders may
make legitimate changes to the email (e.g., a mailing list adding a
footer) but they should always follow the ARC protocol. This also
means ARC cannot prevent malicious forwarders from deviating
from the protocol and adding fabricated authentication records
onto the chain.

When forwarders are trusted, ARC can help to save a legitimately
forwarded email when the forwarding breaks its DMARC. For ex-
ample, when a trustedmailing list forwards an email to a Gmail user.
Due to the mailing list’s modification of the email (e.g., adding a
footer), the original DKIM fails and thus DMARC fails. In this case,
because the mailing list is known to be legitimate, Gmail can choose
to further check the ARC. If ARC=pass, Gmail then can use the
ARC chain to check the authentication record of the original sender
(prior forwarding) and check where the modification is made that
causes the DMARC failure. Gmail may let this legitimate email into
the inbox if the modification is done by this trusted mailing list.

However, if this email is forwarded by an unknown forwarder,
the receiver (Gmail) should not trust the email simply because of
“ARC=pass” or other assertions carried in the chain. Otherwise, this
decision could be exploited by attackers to facilitate their spoofing
attacks (as shown in Section 4.2).

The above discussion leads to an interesting dilemma. ARC
should be considered only when the receiver trusts the forwarders
are in good faith (i.e., honest). This means ARC needs to be used
in combination with allowlists or domain reputation systems. On
one hand, if a forwarder is already on the allowlist of the receiver,
ARC may not add much value to increase email deliverability. On
the other hand, if a forwarder is not currently trusted, ARC should
not be used to establish such trust. This dilemma could lead to a
relatively narrow applicable scope of ARC and hurt its adoption.

Lastly, for security-sensitive domains, we recommend always
using DKIM and setting DMARC policy to “reject”. This minimizes
spoofing attack’s success rate even when ARC is used to amplify
the attack.

6.3 Limitations and Future Work
Our work has some limitations. First, the email dataset used in
Section 3.1 is not necessarily representative. Indeed, finding a large
and recent email dataset is challenging given its sensitive nature.
As such, we only make a conservative conclusion that ARC is not
widely adopted as DKIM yet. Second, our experiments in Section 4
and Section 5 only use a small number of target domains which is a

limitation. We tried to limit our experiment scale to avoid stressing
the receiving email services. Third, our analysis on open-source
ARC implementations is focused on those can be easily found via a
quick Google search. Future work may examine a larger collection
of ARC implementations. Finally, while email user interfaces (UI)
are not a main focus of this paper, we observe that email providers
display forwarded emails differently. Our future work will explore
how users perceive the forwarded (spoofing) emails and whether
they can interpret the information on the UIs correctly.

7 RELATEDWORK
DNS-based email authentication protocols have been studied in
the past with a focus on SPF, DKIM, and DMARC. Researchers
have studied their adoption rates in practice [6, 8–10, 15, 23], secu-
rity flaws rooted in the inconsistent interpretation/parsing of mes-
sages [4], and their inability to handle subdomain spoofing [19, 21].
Our study is different from existing works as we focus on the new
ARC protocol and email forwarding scenarios to understand the
impact of ARC on spoofing detection.

The most related work to ours is [21] where the authors studied
many spoofing techniques but only briefly mentioned ARC. In our
paper, we focus on ARC to dive deeper. The key differences are
three-fold. First, we have different threat models. Prior work [21]
assumes a legitimate forwarder contains vulnerabilities that allow
an attacker to forward (spoofing) emails to an address that the
attackers does not own, whereas our paper assumes the attacker
sets up its own forwarding server. Second, the problems identified in
[21] (in Zoho and Outlook) have been fixed after a year (confirmed
in our experiment). The problems discovered in our experiment are
new. Finally, we analyzed the “Hide-My-Email” forwarding services
of iCloud and Firefox, which is a new contribution.

8 CONCLUSION
In this paper, we perform an empirical analysis on ARC adoption
and implementations in practice. Our analysis is based on an email
dataset of 600K messages, which shows ARC is not yet widely
adopted (in comparison with DKIM). Our controlled experiment
shows that most email providers’ ARC implementations are done
correctly. However, some email provider (i.e., Zoho) has misinter-
preted the meaning of ARC results, which makes spoofing emails
with ARC Sets more successful. Finally, we empirically investigate
forwarding-based “Hide My Email” services from iCloud and Fire-
fox and show their implementation breaks the ARC chain and can
be used to run spoofing attacks against strong defenses. As ARC
starts to get popularized, we hope our results can help practitioners
to avoid common mistakes.

ACKNOWLEDGMENTS
We thank Jeff Parrish for preparing and sharing the email dataset
for our project. This work was supported in part by NSF grant CNS-
2030521, and Jump ARCHES endowment through the Health Care
Engineering Systems Center. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of any funding
agencies.

Revisiting Email Forwarding Security under the Authenticated Received Chain Protocol WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] K. Andersen, B. Long, S. Blank, and M. Kucherawy. 2019. The Authenticated

Received Chain (ARC) Protocol. RFC8617. https://datatracker.ietf.org/doc/html/
rfc8617.

[2] Apple. 2021. What is Hide My Email? https://support.apple.com/en-us/
HT210425.

[3] Marc Bradshaw. 2021. Fastmail Authentication Milter. https://github.com/
fastmail/authentication_milter.

[4] Jianjun Chen, Vern Paxson, and Jian Jiang. 2020. Composition Kills: A Case Study
of Email Sender Authentication. In Proc. of USENIX Security.

[5] D. Crocker, T. Hansen, and M. Kucherawy. 2011. DomainKeys Identified Mail
(DKIM) Signatures. RFC6376. https://tools.ietf.org/html/rfc6376.

[6] Zakir Durumeric, David Adrian, Ariana Mirian, James Kasten, Elie Bursztein,
Nicolas Lidzborski, Kurt Thomas, Vijay Eranti, Michael Bailey, and J. Alex Hal-
derman. 2015. Neither Snow Nor Rain Nor MITM: An Empirical Analysis of
Email Delivery Security. In Proc. of IMC.

[7] Firefox. 2021. Firefox Relay. https://relay.firefox.com/.
[8] Ian D. Foster, Jon Larson, Max Masich, Alex C. Snoeren, Stefan Savage, and Kirill

Levchenko. 2015. Security by Any Other Name: On the Effectiveness of Provider
Based Email Security. In Proc. of CCS.

[9] Hang Hu, Peng Peng, and Gang Wang. 2018. Towards Understanding the Adop-
tion of Anti-Spoofing Protocols in Email Systems. In Proc. of SecDev.

[10] Hang Hu and Gang Wang. 2018. End-to-End Measurements of Email Spoofing
Attacks. In Proc. of USENIX Security.

[11] S. Kitterman. 2014. Sender Policy Framework (SPF). RFC7208. https://tools.ietf.
org/html/rfc7208.

[12] M. Kucherawy and E. Zwicky. 2015. Domain-based Message Authentication,
Reporting, and Conformance (DMARC). RFC7489. https://tools.ietf.org/html/
rfc7489.

[13] John Levine. 2015. What’s ARC? https://circleid.com/posts/20151028_what_is_
authenticated_received_chain_arc.

[14] Mailman3. 2021. Mailman3 Mailing List Manager. https://docs.mailman3.org/
en/latest/.

[15] Sourena Maroofi, Maciej Korczynski, Arnold Hölzel, and Andrzej Duda. 2021.
Adoption of Email Anti-Spoofing Schemes: A Large Scale Analysis. IEEE Trans.
Netw. Serv. Manag. 18, 3 (2021), 3184–3196.

[16] Daniela Oliveira, Harold Rocha, Huizi Yang, Donovan Ellis, Sandeep Dommaraju,
Melis Muradoglu, Devon Weir, Adam Soliman, Tian Lin, and Natalie Ebner. 2017.
Dissecting Spear Phishing Emails for Older vs Young Adults: On the Interplay of
Weapons of Influence and Life Domains in Predicting Susceptibility to Phishing.
In Proc. of CHI.

[17] OpenARC. 2021. The Trusted Domain Project: OpenARC. https://github.com/
trusteddomainproject/OpenARC.

[18] J. B. Postel. 1982. Simple Mail Transfer Protocol (SMTP). RFC821. https:
//tools.ietf.org/html/rfc821.

[19] Florian Quinkert, Dennis Tatang, and Thorsten Holz. 2021. Digging Deeper:
An Analysis of Domain Impersonation in the Lower DNS Hierarchy. In Proc. of
DIMVA.

[20] P. Resnick. 2001. Internet Message Format (RFC5321). https://www.ietf.org/rfc/
rfc2822.txt.

[21] Kaiwen Shen, Chuhan Wang, Minglei Guo, Xiaofeng Zheng, Chaoyi Lu, Baojun
Liu, Yuxuan Zhao, Shuang Hao, Haixin Duan, Qingfeng Pan, and Min Yang. 2021.
Weak Links in Authentication Chains: A Large-scale Analysis of Email Sender
Spoofing Attacks. In Proc. of USENIX Security.

[22] Sympa. 2021. Sympa Mailing List Manager. https://www.sympa.org/.
[23] Dennis Tatang, Florian Zettl, and Thorsten Holz. 2021. The Evolution of DNS-

based Email Authentication: Measuring Adoption and Finding Flaws. In Proc. of
RAID.

[24] TrendMicro. 2021. White Paper by Osterman Research: How to Reduce the Risk
of Phishing and Ransomware. https://resources.trendmicro.com/rs/945-CXD-
062/images/Reduce-Phishing-Ransomware_Trend-Micro.pdf.

A ARC IMPLEMENTATION ANALYSIS
We briefly analyze existing open-source ARC implementations that
can be found online, and explore potential problems with them.

ARC Implementation as Milters. Popular mail transfer agents
(MTA) suits such as Postfix and Sendmail use plugin software, called
“milters”, to run security checks and other extended functionalities
like spam filtering. For example, for DKIM and DMARC, the com-
monly used milters are OpenDMARC and OpenDKIM. For ARC,
we find an “OpenARC” implementation [17] by the same Trusted

Domain Project (TDP) that also developed OpenDKIM and OpenD-
MARC. However, by running OpenARC on our mail server, we find
the implementation has various errors including broken and/or
mismatched signatures (confirmed by sending the OpenARC sealed
emails to Outlook and Gmail). Also, the OpenARC code has not
been actively maintained since 2018.

Another open-source ARC implementation is an authentication
milter developed by Fastmail that contains ARC support [3]. Com-
pared to OpenARC, this project is still actively maintained as of
2021. It is currently used by the Fastmail email service (tested later
in Section 4; no obvious implementation error is spotted).

IntegrationwithMailing List Managers.Mailing lists are based
on email forwarding, and thus we investigate open-source Mail-
ing List Managers to explore their ARC integration. We find that
Mailman3 [14] has included ARC. Their overall implementation
is compliant with the RFC8617 [1], with one exception. We find
Mailman3 does not handle DKIM signing and thus its ARC Set does
not include the DKIM signature header. Even if the outgoing MTA
generates a DKIM header later, it would not be sealed by the ARC
Set. Not sealing the DKIM header makes it difficult to keep track of
its integrity, which is against the RFC8617 recommendations [1].
Since it is the Mailing List Manager (Mailman3) that modifies the
email (e.g., adding the footer), it is better for Mailman3 to handle
the DKIM signature and seal it within the ARC Set.

Another open-source Mailing List Manager Sympa [22] also
integrates ARC. However, due to outdated documentations, we did
not manage to start a runnable instance for Sympa.

Domain Validate Seal in Forwarding Seal in Sending
outlook.com Yes Yes Yes
zoho.com Yes Yes Yes
fastmail.com∗ Yes Yes Yes
gmail.com Yes Yes No
pobox.com∗ Yes Yes N/A
mail.ru No No No
yandex.com No No No
protonmail.com No No No
aol.com No No No
yahoo.com No No No
qq.com No No No
163.com No No No
icloud.com No No No

Table 4: Email providers and their adoption status of ARC.
∗Commercial email services.

https://datatracker.ietf.org/doc/html/rfc8617
https://datatracker.ietf.org/doc/html/rfc8617
https://support.apple.com/en-us/HT210425
https://support.apple.com/en-us/HT210425
https://github.com/fastmail/authentication_milter
https://github.com/fastmail/authentication_milter
https://tools.ietf.org/html/rfc6376
https://relay.firefox.com/
https://tools.ietf.org/html/rfc7208
https://tools.ietf.org/html/rfc7208
https://tools.ietf.org/html/rfc7489
https://tools.ietf.org/html/rfc7489
https://circleid.com/posts/20151028_what_is_authenticated_received_chain_arc
https://circleid.com/posts/20151028_what_is_authenticated_received_chain_arc
https://docs.mailman3.org/en/latest/
https://docs.mailman3.org/en/latest/
https://github.com/trusteddomainproject/OpenARC
https://github.com/trusteddomainproject/OpenARC
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc821
https://www.ietf.org/rfc/rfc2822.txt
https://www.ietf.org/rfc/rfc2822.txt
https://www.sympa.org/
https://resources.trendmicro.com/rs/945-CXD-062/images/Reduce-Phishing-Ransomware_Trend-Micro.pdf
https://resources.trendmicro.com/rs/945-CXD-062/images/Reduce-Phishing-Ransomware_Trend-Micro.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Email Spoofing Attack
	2.2 Security Extensions against Spoofing
	2.3 Email Forwarding and ARC

	3 Progress of Adoption
	3.1 Analyzing an Email Dataset
	3.2 Analyzing Email Providers
	3.3 Open-source ARC Implementations
	3.4 Result Summary

	4 ARC Impact on Spoofing
	4.1 Experiment Setup
	4.2 Experiment Results
	4.3 Result Summary

	5 ``Hide My Email'' Services
	5.1 Attacking via iCloud HME
	5.2 Attacking via Firefox Relay
	5.3 Result Summary

	6 Discussion
	6.1 Ethical Considerations
	6.2 Benefits and Problems of ARC
	6.3 Limitations and Future Work

	7 Related Work
	8 Conclusion
	References
	A ARC Implementation Analysis

