
Towards Continuous Integrity Attestation and Its
Challenges in Practice: A Case Study of Keylime
Margie Ruffin1, Chenkai Wang1, Gheorghe Almasi2, Abdulhamid Adebayo2, Hubertus Franke2, Gang Wang1

1University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
2IBM Research, Yorktown Heights, NY 10598, USA

Abstract—Continuous integrity attestation is vital for cloud
providers to ensure the integrity of remote systems in a continu-
ous manner. Current solutions, such as Keylime, rely on Trusted
Platform Module (TPM) and Linux’s Integrity Measurement
Architecture (IMA) but often struggle to balance minimizing
false alerts and maintaining effective threat detection. In this
paper, we examine common causes of attestation failures in
Keylime through active experiments. We find that false positives
often stem from unscheduled OS updates, and we propose a
dynamic policy generation scheme as a solution (validated over
66 days of experiments). Our false negative experiments reveal
vulnerabilities in existing designs, including five common issues
across Keylime and IMA. Exploiting these issues, attackers could
evade detection in all tested scenarios. Our findings offer insights
into common failures of continuous integrity attestation, and our
proposed solution is being integrated into Keylime with commu-
nity support, enhancing cloud security. Our code will be available
at https://github.com/mruffin/Dynamic-Policy-Generator.

I. INTRODUCTION

Remote attestation [1], [2], [3] is increasingly important
to cloud providers to ensure the integrity of large fleets
of remote systems. The Trusted Platform Module (TPM) is
among the most widely adopted solutions for proving that
remote attestation data is genuine [2]. TPM is a crypto-
processor that implements the concept of hardware root-of-
trust [4]: it can prove its own authenticity and initial state
by providing a certificate signed by its manufacturer. In the
past decade, most TPM-based solutions have been focused
on measured boot attestation, which ensures the integrity of
machine booting [5], [6], [7], [8], [9].

However, attestation is needed beyond the boot time. In
recent years, continuously attesting a machine long after boot
has drawn significant interest from major industrial stake-
holders such as Amazon AWS [10], Intel [11], Microsoft
Azure [12], IBM [13], and Redhat [14], [15]. This is often
called “runtime” or “continuous” integrity attestation. Prior
research on runtime attestation has been focused on verifying
specific software properties and their code execution (control
flow) [1], [16], [17], [18], [19]. However, cloud providers have
a more emergent need to perform attestation for the entire file
system [8], [20], [21], periodically building a trustworthy state
snapshot for the machine based on the signatures of system ex-

ecutables. We call this continuous integrity attestation.1 While
industry players often develop their solutions in-house [11],
[10], there is a growing open-source community working
towards a general and standard framework for continuous
integrity attestation [22].

Despite the different approaches, there are common research
questions rooted in the fundamental trade-off for continuous
integrity monitoring – minimizing false alerts while keeping
attestation useful. Intuitively, permissive policies cause low
sensitivity (i.e., missing true attacks), while strict policies tend
to fire false alerts. This problem is especially challenging
in today’s cloud environment, which is subject to software
diversity in both space (different types of machines) and
time (quick update strategies), making the establishment of
a reasonable attestation policy difficult.

Our Work. In this paper, we seek to empirically examine
the potential failures from the continuous integrity attestation
framework and understand their root causes. We specifically
focus on Keylime’s integrity attestation framework [23] for a
case study. We choose Keylime because it is the most widely
used open-source solution in this domain. Keylime is hosted
by the Cloud Native Computing Foundation (CNCF) and is
backed up by many industrial partners and a growing open-
source community. Recently, cloud providers have started to
integrate Keylime for remote attestation [24], and Red Hat
Enterprise Linux also has built-in support for Keylime [15].

Research Questions. This paper was motivated by a set
of questions to which we found no satisfactory answers in
current practice or literature. (1) What are the common causes
of false positives in Keylime’s continuous integrity attestation?
(2) To what extent can Keylime’s continuous attestation detect
different malicious attacks as opposed to policy failures caused
by neglect or configuration errors? (3) How to systematically
reduce (or eliminate) false positives and false negatives?

Evaluation of False Positives. To understand false positive
errors, we take the integrity monitoring policy developed by
IBM Research as the testing target (the policy is not used
in production). We run the system for a week with normal

1Industrial practitioners (e.g., Keylime developers) have used the term
“Runtime Integrity Attestation” to describe this type of system. However,
we believe “Continuous Integrity Attestation” is a more accurate term,
to differentiate it from solutions that focus on software execution/runtime
integrity. We will explain further in Section II.



operations only. Normal operations include navigating the
filesystem, opening and closing files, launching scripts to
perform tasks, and performing system updates. We find that
false positive errors are mainly caused by OS updates, which
lead to discrepancies between the predefined Keylime policy
and the measurement results.

To address this problem, we propose a dynamic policy
generation for Keylime coupled with a data-center controlled
update schedule for software updates. Dynamic policy gen-
eration involves a local “mirror” for Linux OS distributions
for policy generation and system updates. To evaluate the
effectiveness of the idea, we implement the prototype using
Canonical’s Ubuntu OS distribution for a proof-of-concept.
We run a prolonged experiment for 66 days (31 days for a
“daily update” experiment and 35 days for “weekly updates”).
We demonstrate that Keylime can continuously perform at-
testation without triggering attestation failures throughout the
experiment time period (36 system updates in total). For daily
updates, it takes, on average, 2.36 minutes to update the policy,
and the policy update overhead is small (1,271 lines, 0.16 MB
on average).

Evaluation of False Negatives. To trigger false negatives,
we empirically test three categories of attacks commonly
faced by cloud providers that involve modifying system files:
Ransomware, Rootkit, and Botnet Command and Control
(C&C). We execute 8 real-world attacks and find that Keyline’s
continuous integrity attestation can detect all the attacks if the
attackers are unaware of the presence of Keylime. However,
during the experiments, we have identified five problems (P1–
P5) across Keylime and Linux IMA (Integrity Measurement
Architecture) that can enable adaptive attacks. Some of the
problems are related to unmonitored directories by Keylime
(P1) or unmonitored file systems by IMA (P3), while others
are caused by deeper design issues, such as IMA’s file eval-
uation logic (P4) and its inability to properly handle script
interpreters (P5). Crucially, by exploiting one or a combination
of these problems, adaptive attackers can execute all 8 attacks
without being detected by Keylime.

Based on our results, we recommend four mitigation fixes
for the discovered problems. We also use the results to reflect
on the proper use case of Keylime and discuss the fitness of
Keylime for general attack detection (see Section V).

We responsibly disclosed our findings to the Keylime open-
source community, some of which have been acknowledged.

Summary of Our Contributions.
• Measure: we present the first empirical study of the

attestation failures of Keylime’s continuous integrity at-
testation framework, including both false positives and
negatives.

• Analyze: we identify common causes of false posi-
tive/negative failure across Keylime and IMA.

• Fix: we propose a dynamic policy generation method to
address the false positive problems. We provide recom-
mended fixes for the false negatives. We will share the
developed tool and testing suite with the community.

II. BACKGROUND AND RELATED WORK

Remote Attestation and Trusted Platform Module. Re-
mote attestation aims to establish the “trustworthiness” of one
or more remote systems by comparing their actual state against
a policy defined by the data center operator. The verifier
(the program running attestation) is considered trusted; the
attested systems (or the provers) are completely untrusted. The
Trusted Platform Module (TPM) [2] is a device commonly
used to establish that information from the attested prover
system is genuine. The TPM is a chip that conforms to a
secure cryptoprocessor standard, a dedicated microcontroller
designed to secure hardware through integrated cryptographic
keys [25], [4]. The TPM can prove its own identity (using
certificates signed by its manufacturer) and the identity of
the system it’s installed on, and provides a “root of trust”.
The TPM also helps build “chains of trust” by allowing
software measurements to be recorded in a nonrepudiable
fashion. Measured Boot Attestation proves this chain of trust
from hardware to the booted kernel, ensuring the integrity of
the boot process [5]. Runtime/continuous integrity attestation
picks up where the measured boot left off and focuses on
software integrity once the kernel is booted.

Although measured boot attestation is well-studied [5],
[6], [7], [8], [9], runtime/continuous integrity attestation and
related techniques are less mature [20].

Integrity Attestation using IMA. Most runtime/continuous
integrity attestation frameworks rely on Linux’s Integrity Mea-
surement Architecture (IMA). In its most basic mode, IMA
collects and records hashes of files when they are opened
before their content is accessed for reading or execution [26].
File hashes are recorded in a cumulative log and in a single
TPM PCR (Platform Configuration Register).

We use Fig. 1 to describe the attestation process using IMA.
Through attestation, the verifier (trusted machine) seeks to
verify the state of the prover (untrusted machine). ❶ The
verifier (trusted machine) issues a challenge by requesting
the measurement list (IMA Log) as well as the TPM-signed
PCR values, which represent an aggregate of measurements
from the attested machine (prover). The aggregate is retrieved
through a TPM Quote process2, which cryptographically en-
sures its integrity. ❷ The verifier validates the IMA log against
the aggregate. This is done to preclude the possibility of
tampering with the log, either on the attested machine (prover)
or en route. ❸ A runtime policy3 is supplied by the verifier and
used to validate the file measurements found in the IMA log.
❹ Finally, the verifier can reason about the trustworthiness of
the prover’s runtime integrity and issue a verdict.

Certain industrial practitioners have used the term “Runtime
Integrity Attestation” to describe such IMA-based attestation
frameworks [28], [11]. However, we believe that “Continuous
Integrity Attestation” is a more accurate term because IMA

2TPM Quote refers to retrieving the values from the TPM’s PCR using a
cryptographic process [27].

3The policy is a collection of measurements of authorized files for a
particular machine.



Keylime Agent

TPM 2.0 IMA Log

IMA
Measure

PCR 0

... 

... 

File
Hashes

Keylime Registrar

Keylime Verifier

Keylime
Policy

PCR 10

1 Issue Challenge

2.1 Gather TPM Quote and IMA Log

2.2 Authenticate Log Against Quote

3 Validate System Measurements
using Keylime Policy

Keylime Tenant

4 Reason About System Trust 
& Issue Verdict

Prover

Keylime OperatorVerifier

Fig. 1: Relationship between Keylime components, TPM 2.0,
and Linux Integrity Measurement Architecture (IMA).

only measures file hashes rather than monitoring the detailed
file execution at runtime. The term helps to distinguish itself
from existing solutions that focus on software runtime execu-
tion integrity [29], [30], [17], [18]. For the rest of the paper,
we will use “Continuous Integrity Attestation.”

Keylime. We select Keylime [23] to study the practi-
cal challenges faced by continuous integrity attestation and
measurement. Keylime is an open-source project hosted by
the Cloud Native Computing Foundation (CNCF) [22], [23]
and is the only open-source solution in this domain. We
select Keylime for two reasons. First, it is widely recognized
as the “go-to” software solution for remote attestation and
continuous integrity measurement in modern distributed in-
frastructures [31]. It is used as the basis for various research
endeavors [32], [33] and is growing in its adoption in the
open-source community [34]. Alternatives to Keylime have
been proposed [35], [36], [37]; however, none offer the sta-
ble contributions of a large open-source community or are
adaptable enough to scale to large production environments.
Second, Keylime has received significant industry attention
from practitioners. Stakeholders such as IBM Cloud are ac-
tively integrating Keylime for remote attestation [24]. Keylime
is also already a supported project for Red Hat Enterprise
Linux [15].

As shown in Fig. 1, Keylime consists of 4 components:
an agent, a verifier, a registrar, and a command line tool
called the tenant. These components work together to realize
the attestation process described earlier in this section. Here,
we briefly describe the responsibilities of these components.
Further details can be found in Keylime’s documentation [28].
The “agent” is the only component that runs on the untrusted
machine to be attested (i.e., the prover). Its main job is to
collect IMA measurements and gather TPM quotes from the
prover machine for attestation. The verifier machine is trusted,
and it hosts two components: (a) The “Keylime verifier” is in
charge of implementing the attestation process, and (b) the
“Keylime registrar” supports the verifier by managing initial

communication with the agent and guarding against spoofed or
compromised TPM devices. Lastly, the “tenant” is a command-
line management tool used to manage groups of attested nodes.
Keylime can act as an alert system that notifies its operator by
raising a flag if the continuous integrity monitoring fails (e.g.,
a system executable file has been altered without approval).

Related Work and Our Differences. Most prior work
in this area focused on code execution of specific software
(e.g., control-flow correctness) [29], [30], [17], [38], [18];
others focused on verifying dynamic system properties [39],
or service integrity within a Trusted Execution Environment
(TEE) [19]. Our paper is different as we focus on large-scale
file system monitoring for cloud providers.

Two related works [40], [41] also focus on the cloud
environment but have a different threat model from ours: they
seek to ensure integrity for users/tenants who use untrusted
public cloud. Other related works focus on different/orthogo-
nal aspects such as the attestation of embedded systems [17],
[16], [35], privacy issues of integrity measurements [42], and
providing attestation support for legacy systems/clients [43].
A recent work uses Keylime to build a virtual trusted platform
module (vTPM) that virtualizes the hardware root of trust for
virtual machines’ remote attestation [44].

III. FALSE POSITIVE (FP) EVALUATION

We start with our false positive experiments. False positives
(FP) represent benign activities that incorrectly cause Keylime
to fire an alert on failed attestation.

A. False Positive Experiment

To trigger false positives, we set up a virtual environment
(Canonical Ubuntu 22.04) and initiate the continuous integrity
monitoring using an initial Keylime policy created by IBM
Research as our target (the policy is not used in production).
We let the system run for a week and only conduct benign
operations with no attacks. As such, any alerts fired by
Keylime for failed attestation are considered false positives.

The initial policy aims to capture the state of executable files
in the target machine to perform attestation (executable files
are also what IMA measures). The policy is constructed as the
following: a bash script recursively goes into each directory
in the root directory “/” until it reaches the bottom-most file,
takes the SHA256 hash for executable files, and writes it to
the policy. It focuses on files with the “executable” bit set
to include files such as dynamic libraries and kernel modules.
Note that the initial policy is designed to be permissive but
also with false positives in mind. For instance, it excludes files
specifically used for the containers and customization scripts
that did not originate from Canonical. While not comprehen-
sive, it provides a just-in-time snapshot of a machine that, in
testing, undergoes little to no changes. This policy is designed
for cloud nodes with a stable set of executables.

B. Causes of False Positives

During the one-week testing, we observed alerts/errors that
stopped Keylime from attesting due to two main reasons.



Keylime Tenant

Local Mirror

Decompile
.deb pkg

Take file
measurement

Add files &
hashes to policy

Keylime Operator

Prover Machine

SHA256

Verifier Machine

Ubuntu Archive

Keylime Registrar

Keylime Verifier
Keylime Agent

System updates

Fig. 2: The dynamic policy generation framework and its
interaction with Keylime components.

System Updates. Ubuntu performs OS updates automat-
ically if not otherwise configured [45], which was the main
case of attestation errors. (1) The first type of error is “hash
mismatch”, which means both the IMA log and the policy
contain the file, but the hashes do not match (i.e., modified
file or file name). (2) The second type of error is “missing file
in the policy”, which means there exists a file in the IMA Log,
but it is not present in the policy (i.e., newly added files).

SNAPs. SNAPs are applications containerized with their
entire set of dependencies. The purpose of SNAPs is to
avoid situations in which competing applications on the
same host require mutually incompatible sets of dependen-
cies [46], [47]. Each Ubuntu SNAP runs in an isolated
sandbox, in the “/snap” directory, and appear on the policy
as “/snap/core20/version_num/file_name”. How-
ever, since IMA is unaware of the containerized nature
of SNAPs, measurements of SNAP binaries appear trun-
cated, without their SNAP prefixes, e.g., as “/file_name”.
Keylime raised an error because it failed to match the mea-
sured (truncated) file name. This problem is not specific to
SNAPs but would occur to any containerized execution, or
files executed under chroot environment.

C. Solution: Dynamic Policy Generation

We explore solutions to address the identified problems.
For SNAP files, there are two ways to address them. (a)
We can force a consistent file naming format between the
target policy and the IMA log. This can be done simply
by post-processing the target policy and scrubbing the prefix
/snap/core20/version_num/ and other variations of
the file names. (b) Another option is to simply disable SNAP
on the machine. Since SNAP is not part of the base OS, by
default, we can disable SNAP to prioritize the efficiency of
the attestation.

Second, the system update problem is more challenging, and
thus, we focus on this problem for the rest of this section. To
maintain the validity of the policy while keeping the system
current with the latest updates, we propose a dynamic policy
generation scheme. The idea is that every time before a major
update is scheduled to be implemented, we create a new policy
to proactively account for the dynamic changes a machine
might encounter. While the idea may appear simple, this is the

first solution that allows Keylime to run continuously without
false positive errors (see experiments later).

Dynamic Policy Generation Framework. We implement
a dynamic policy generation prototype using Ubuntu 22.04
LTS Jammy Jellyfish [48]. The idea is illustrated in Fig. 2.
The cloud operator can use any stable distribution of their
chosen operating system. Our framework follows these steps:
(1) identify updates in advance, (2) generate policies based on
updates, and (3) preempt system updates to provide Keylime
with the policy for attestation.

Implementing a Mirror of OS Distribution. To control
updates, operators disable “Unattended Upgrades” and create
a local mirror of the Ubuntu distribution with sufficient storage
(e.g., 1TB). This mirror includes the “Main,” “Security” and
“Updates” repositories, essential for a base OS. Other repos-
itories such as “Universe” or “Multiverse” are not measured
because they are not needed to run a base OS. This allows
controlled updates and prevents overloading the distribution’s
web server with requests to pull down packages.

Dynamic Policy Generator. The generator refreshes the
mirror, measures executable files from the “Main,” “Security,”
and “Updates” repositories, and filters duplicates. To measure
the files, we download and uncompress the package from
the mirror and extract its executable files and filenames. We
iterate through the files using their filenames and take their
SHA256 measurements. Finally, the measurements, along with
the filenames, are written into the policy. This process is
repeated for every package in the three sub-repositories. We
only consider executables because IMA only considers them
when it measures files inside the challenged party. Operators
can update policies efficiently by incorporating only modified
or new executables. The updated policy is issued to the
Keylime agent, which compares real-time measurements from
the kernel against the policy. A key advantage of dynamic
policy generation is that we can account for specific package
updates and append new hashes to the existing policy, which
is more efficient than regenerating the policy entirely.

Handling Kernel Modules. Executing the update in prac-
tice faces practical challenges from kernel modules. Kernel
Modules can be loaded and unloaded into the kernel on
demand. They can extend the kernel’s functionality without the
need to reboot [49]. There are two issues to consider. First, a
machine can have many kernels (including outdated ones), and
the policy should only consider one kernel that the machine
currently uses and disallow outdated kernel modules. Second,
during a system update, a new kernel can be installed, but it
will not run before rebooting the system. As such, when a
machine performs an update without rebooting, the policy can
tentatively ignore the new kernels. This also means the policy
will need to be updated for new kernels before the reboot.

Handling Policy-File Consistency During Update. During
updates, Keylime continues attestation using the newly issued
policy. To avoid errors from mismatches between old files
and the new policy during the brief update window (e.g., 5



Fig. 3: The time it takes to update an
existing Keylime policy (daily update).

Fig. 4: The number of newly added and
changed packages that contain executa-
bles per update (daily update).

Fig. 5: Number of added and changed
file entries to policy for each policy
update (daily update).

minutes), the updated policy retains existing entries and adds
only new or modified files. This ensures the system remains
in policy throughout the update. Deduplication to remove
outdated hashes can occur post-update.

D. Evaluation

We evaluate our dynamic policy generator’s effectiveness
and overhead with two experiments. In the first experiment,
the operator set the system to update every day (similar to
the default updating frequency of “Unattended Upgrades”) and
ran the system for 31 days (from February 26 to March 28,
2024). In the second experiment, we hypothesize an operator
who decides to update less frequently (i.e., weekly) to see if
there is an extra benefit or cost (running for 35 days, from
May 6 to June 3, 2024). Due to space limitations, we present
the first experiment in detail and put the second experiment
result in supplementary materials [50].

Effectiveness of Reducing False Positives. Across the
two experiments (66 days, 36 updates in total), Keylime did
not fire any false positive alerts for the vast majority of the
system updates (with one exception, which will be explained
below). Zero false positives were fired during the normal
operation periods after the system update. This confirms that
our proposed method is effective in reducing false alerts.

During the experiment, the only time when Keylime stopped
attestation was due to a particular configuration of our exper-
iment setup. This error was due to our incorrect setup: the
Ubuntu mirror was synced at 5:00 AM daily. On March 27,
2024, the release was issued after our mirror was synced and
there was a misconfiguration from the operator (human error)
who installed the updates using the official distribution instead
of the local mirror, which fired the false positive. To prevent
this error from occurring, the operator should have updated
the agent machine from the local mirror.

Time Overhead to Update the Policy. Fig. 3 shows the
time overhead of updating the policy each day. The result
shows that updating the Keylime policy daily is a feasible
approach; it can be done rapidly. For most of the days, the
policy update only takes less than 10 minutes. On average, it
takes 2.36 minutes with a standard deviation of 5.26. This is

Experiment # Low-P # Hig-P # of Files Time
Pkgs Pkgs Updated (mins)

Daily Update 15.6 0.9 1,271 2.36
Weekly Update 76.4 2.6 5,513 7.50

TABLE I: Result Summary. The average number of packages
(high and low priority), number of files, and time it takes to generate
a new policy for the daily- and weekly-update experiments.

because policy update only measures hashes for new/updated
files.

Number of Involved Packages Per Update. We examine
the number of packages included in each system update. Here,
we only consider the packages that contain executables. As
shown in Fig. 4, the majority of updates have less than 30
package updates that involve executable files. The average
number of updates is 16.5, with a standard deviation of 26.8.
If we further examine the high-priority package updates, the
number is even smaller. We extract the package priority labels
ranging from high-priority (including “Essential”, “Required”,
“Important”, and “Standard”, ) to low-priority (including “Op-
tional”, and “Extra”). The daily update only has 0.9 high-
priority package updates (with executables) with a standard
deviation of 2.2.

Policy Size Changes Per Update. Finally, we examine
the number of entries written to the Keylime policy for each
update. Fig. 5 shows the number of file entries. The number
is higher than the number of packages since each package
can contain multiple executable files. On average, each update
only adds 1,271 lines to the policy file, which corresponds to
a file size change of 0.16 MB. This is small compared to the
original policy size (323,734 lines, 46 MB on day 1). Overall,
our result suggests that the policy updating overhead is small
and supporting daily updates is feasible.

Impact of Reduced Update Frequency. Our second ex-
periment aims to explore if less frequent updates (i.e., weekly)
would significantly increase the update overhead. The result is
summarized in Table I. Overall, the result suggests that weekly
updates have a comparable (and a slightly higher) cost per
update compared with daily updates. We don’t recommend this
option given the potential negative consequences of delayed



important updates, as it may leave the system vulnerable.

IV. FALSE NEGATIVE (FN) EVALUATION

False negatives represent malicious activities that fail to be
captured by Keylime’s continuous integrity monitoring. In this
section, we present the false negative evaluation to understand
to what extent Keylime can be used to detect malicious attacks
that involve modifying system files.

A. Experiment Setup and Attack Selection

For this experiment, we use the new policy derived from
the false positive experiment (instead of the original policy)
because the new policy can properly contain false positives.
Before each attack, we make sure Keylime is set up correctly
to perform attestation. Each experiment is conducted indepen-
dently with the same initial state of the machine. We use an
Ubuntu 22.04 LTS virtual machine with all software packages’
versions aligned with the same mirror operated for the false
positive evaluation.

We consider the scenario where the attacker has already
gained access to the compromised system, with an intent to
deploy attack payloads or to gain more capabilities. We test
three categories of attacks that are commonly faced by cloud
providers: Ransomware, Rootkit, and Botnet Command and
Control (C&C), using a combination of open-source PoCs (i.e.,
proof-of-concept exploits) and real-world virus/malware sam-
ples. We understand that these categories are not an exhaustive
list of threats. When selecting attack samples, we mainly
consider the goals and capabilities of IMA and Keylime. More
specifically, IMA and Keylime aim to attest that the loaded
executables are trusted according to the policy. As such, we
select attack samples that have the potential to alter, remove,
or hide executable files from the running systems, which are
within the scope of continuous integrity monitoring.

In total, we execute 8 attack samples, as shown in Table II.
We have stopped testing new attack samples (after the 8
attacks) as the attack samples no longer trigger new types
of false negatives to derive new insights. We provide further
details about each attack in the supplementary materials [50].

B. Experiment Results

By running the aforementioned attack samples in the tar-
get environment, we reveal 5 common problems (P1–P5) of
Keylime’s continuous attestation. These problems have led to a
successful execution of the attack payload which resides in the
system temporarily or persistently without causing any failed
attestation to trigger an alert. On a long-lived system, this
could mean backdoors or APT (advanced persistent threats)
reside in the running systems persistently for a long time due
to the “false negative” attestation result..

Table II list the 5 problems. P1–P2 are problems of Keylime
while P3–P5 are problems of IMA. The “basic” column shows
the detection result if the attacker is unaware of the presence
of Keylime while performing the basic attacks. The “adaptive”
shows the scenario where attackers take advantage of the

problems of Keylime/IMA (P1–P5) to evade detection. We find
that all attacks can evade Keylime’s detection if they exploit
one or a combination of the discovered problems.

P1: Unmonitored Directories (Keylime). We discovered
a vulnerability inherent in the Keylime policy which had
a permissive setup that ignored some directories. We could
avoid triggering any alerts if we executed attacks in these
directories. One prominent example is the /tmp directory,
where we could perform decompression, compilation, and
download without detection. We discovered this issue when
we first ran Mortem-qBot-Botnet_Src, which had a
deployment script that utilized /tmp as its working directory.
Then, we found this problem applied to all other attacks. We
confirmed that other attacks could be deployed and executed
in /tmp and remained undetected until a reboot. We further
inspected the Keylime policy and found it excluded the /tmp
directory altogether. This is inherent from the original policy
(the exclusion was initially to improve attestation efficiency
and reduce false positives).

P2: Incomplete Attestation Log (Keylime). By default,
Keylime would stop polling upon detecting discrepancies
between the IMA log and the policy. This will lead to an
“incomplete” attestation log and can be further exploited by
attackers. We discovered this problem during an attack when
we accidentally triggered Keylime’s attestation failure. With
this exploit, the attacker can first trigger a false positive
(e.g., by adding benign executable files that are not in the
policy) to cause Keylime to stop polling and produce an
incomplete attestation log. After that, the attacker can execute
the attack (e.g., by running an executable). Note that the
attack will not be written to the attestation log because the
false positive has paused Keylime’s attestation. When Keylime
restarts attestation, the unresolved false positive will pause
it again to produce another incomplete log. Operators can
manually resolve the FP, but it will take time, and this provides
a time window for the attacker to execute attacks.

P3: Unmonitored File Systems (IMA). During the attack
experiments, we discovered that the IMA policy (derived from
Keylime’s official documentation) had elected to ignore a
range of file systems, such as tmpfs, procfs, debugfs,
ramfs, securityfs, overlayfs. Note that tmpfs and
procfs are commonly writable directories. This means at-
tackers may take advantage by executing the attack directly
from /proc, for instance. Since IMA ignores /proc during
its measurements, Keylime is thus blind to the corresponding
activities. This would allow the attack to persist until a reboot
and remain undetectable throughout the compromise.

P4: A Lack of Re-Evaluation (IMA). We discovered
a design issue in IMA that IMA measurement is done only
once per executable. This might be a reasonable design choice
for IMA, but it can lead to problems when used for attack
detection. More specifically, when testing Diamorphine and
Vlany in the /usr directory, we expected Keylime to detect
them. However, we observed that the execution of the malware



Detected? Problems Exploitable
Name Basic Adaptive P1 P2 P3 P4 P5 Mitigat.

Ransomware:
AvosLocker ✓ ✗ ● ● ● ● ✓*

Rootkit:
Diamorphine ✓ ✗ ● ● ● ● ● ✓*
Reptile ✓ ✗ ● ● ● ● ● ✓*
Vlany ✓ ✗ ● ● ● ● ● ✓

Botnet C&C:
Mirai ✓ ✗ ● ● ● ● ● ✓*
BASHLITE ✓ ✗ ● ● ● ● ● ✓*
Mortem-qBot ✓ ✗ ● ● ● ● ● ✓*
Aoyama ✓ ✗ ● ● ● ● ● ✗

TABLE II: Attacks tested against Keylime. Legend: ✓—
The sample execution is detectable by Keylime; ✓* The sample
execution is detectable upon reboot / fresh attestation; ✗—The sample
execution is not detectable by Keylime; ●—This attack sample may
take advantage of the discovered problem. The column “basic” means
basic attacks where adversaries are unaware of the presence of
Keylime and execute the attacks normally. The column “adaptive”
means adaptive attacks where adversaries take advantage of the
discovered problems (P1–P5) to evade Keylime.

was never reported in the attestation log (before a reboot).
Upon investigation, we discovered that it was because the
installed malware was first put to “/tmp” and then moved
to its final destination “/usr” for execution. This malware
was not detected by Keylime when it was first added to
“/tmp” (the reason is explained in P1). However, IMA still
evaluated the malware since IMA did not ignore the “/tmp”
folder. After it was moved to /usr directory, it also did not
appear in the IMA attestation log even though it was executed
in the destination directory. The reason was that IMA, by
design, does not re-evaluate an identical file with a different
path within the same file system. This gives attackers more
flexibility and amplifies the attack’s impact.

To exploit this, the attackers would first put their attack
payload in a directory that IMA evaluates but Keylime ignores.
Then, the attacker can move the payload to their destination
directories for execution. Fundamentally, this is possible be-
cause IMA and Keylime have different mechanisms for their
exclusion (i.e., IMA may ignore a file system while Keylime
ignores specific directories). Since IMA does not re-evaluate
a file with a moved path under the same filesystem, Keylime
would never know the path/directory change.

P5: Scripts and Interpreters (IMA). This was observed
within attack examples that either come with a Makefile
or scripts (e.g., Python and Bash) for compilation and de-
ployment. We found that IMA treated scripts’ execution
drastically differently based on how it was invoked: if it
was executable directly invoked and relied on shebang to
load (i.e., ./script.py), the script file would be attested.
However, if it was using an interpreter to load the script (i.e.,
python ./script.py), the interpreter would be attested
(i.e., Python) instead of the script itself. In this case, attesting
the interpreter (i.e., Python) is not useful for detecting
the attacks. This challenges a fundamental design choice of

IMA when many services and critical system components are
implemented using a scripting language. From the attackers’
perspective, they could circumvent attestation by simply im-
plementing the attack or invoking the attack via interpreters.
As shown in Table II, this problem applies to all 8 attack
samples except for AvosLocker, which only has a binary.

C. Mitigation Solutions

Based on our analysis, we provide recommendations for
mitigating the discovered problems. These recommendations
aim to improve the capability of Keylime and IMA to detect at-
tacks that involve unauthorized changes to the system executa-
bles. However, we emphasize this does not necessarily make
Keylime ready to handle all types of attacks. More specifically,
we propose changes in (1) Keylime policy/configuration, (2)
Keylime implementation, and (3) IMA implementation. We
have run experiments with the recommended changes in (1)
Keylime policy/configuration and obtained positive results.
However, we unfortunately cannot implement the changes for
(2) and (3) due to their complex nature and our resource
constraints. The last column (“Mitigat.”) in Table II lists the
theoretically possible outcomes if the recommended changes
were implemented: 7 out of 8 attacks can be detected by
Keylime upon reboot or fresh attestation, except for “Aoyama.”
The reason is that Aoyama is fully implemented in Python.
It can exploit the script interpreter problem (P5) since P5 is
difficult to fully mitigate (see reasons below).

Enriching Keylime/IMA Policies. Keylime or IMA ig-
nores certain directories or filesystems (P1, P3), which allows
adversaries to execute their attacks. A straightforward fix is
to enrich the Keylime policy by adding the missing entries
of executables from the ignored directories or filesystems.
While this may slightly increase the overhead of attestation,
the impact is manageable. Through a quick test, we believe the
additional coverage on filesystems and directories is feasible
given systems under normal operations do not have executa-
bles routinely appearing in those places (e.g., “/tmp”).

Improving Keylime’s Attestation Process. To counter P2,
a potential solution is to change the design of Keylime such
that it does not stop polling upon errors during attestation.
Even though we agree that “failed attestation results are
not trustworthy,” we still recommend that Keylime should
not return incomplete attestation results but instead should
always complete the full attestation process. Even in the
presence of false positives, Keylime should not undermine the
ability/possibility of discovering real discrepancies caused by
attacks in the system.

Improving IMA Design: Re-Evaluation. IMA’s design
problem is more complicated to address. For P4, IMA does not
re-evaluate the same executable after relocation to a new di-
rectory within the same filesystem—to the operating system, it
is identical. However, with Keylime’s directory-based tracking
and filtering, this becomes a problem. There are two possible
solutions: (1) IMA can provide the directory information in
the IMA log and re-evaluate the file upon directory changes,



or (2) Keylime needs a new mechanism to do filtering and file
tracking without depending on paths or directory information
(e.g., by relying on checksums themselves).

Improving IMA Design: Script Invocations. Fixing P5
is more challenging as it involves multiple parties: Keylime,
IMA, and script interpreters. One possible direction is to
have Keylime implement separate components to support the
evaluation of script invocation. With a dedicated kernel module
monitoring file operations of known interpreters, Keylime
would no longer be limited by the design of IMA. A key
challenge to realize this idea is to effectively distinguish code
from data through interpreters.

Alternatively, a recent advancement in the Linux kernel
community may offer a promising solution. More specifically,
a patch set named “script execution control” allows interpreters
that open executable scripts to set a special flag to inform the
kernel that the file opened is executable in the interpreter [51].
If the common/popular interpreters (e.g., Python, and Bash)
opt-in to use this new feature, it would eventually be possible
to mitigate the issue in common/popular script interpreters.
Keylime operators may even set the policy to only allow/-
support interpreters that support “script execution control” to
reside in the attested systems.

V. DISCUSSION AND CONCLUSION

In this paper, we empirically examine the failures from
Keylime’s continuous integrity monitoring framework and
understand their root causes. In the following, we discuss key
findings and implications.

Dynamic Policy Generation. To address the false positive
errors (introduced by system updates), we develop a dynamic
policy generator and confirm its effectiveness. In addition, we
show that the policy update is highly efficient for practical de-
ployment (it takes 2.36 minutes on average for a daily update).
However, there is still room for improvement. For example,
the current method requires individual operators to build file
hashes themselves for the packages. This can be substantially
improved if file hashes in packages are generated and then
signed by the package maintainers (similar to ostree [52]).
This would allow operators to know that what they are running
is indeed trusted. Keylime is currently compatible with Linux-
based operating systems (e.g., microOS, Ubuntu, and Red Hat
Enterprise Linux). Our paper has shown that dynamic policy
generation works for Ubuntu. As long as other Linux-based
OSes have a similar structure for package release, our method
can be potentially adapted to work with them. Keylime is not
currently compatible with Windows, which has its own remote
attestation architecture [53]. As such, our framework does not
apply to Windows.

Proper Use Cases of Keylime. We again emphasize that
Keylime and IMA are not designed to capture all types of
attacks. However, malicious activities that involve modifying
system executables should be within scope. Focusing on these
types of attacks, we provide valuable lessons to Keylime

operators and developers regarding the potential vulnerabil-
ities and directions of improvements in Keylime policies and
implementation. The result suggests that any rules that elect
to skip attestation should be cautiously used—this is especially
true when they are wildcards of directories or filesystems. In
addition, we argue that Keylime (or similar remote attesta-
tion solutions) should not be used as an Intrusion Detection
System (IDS). Instead, it should be only used to verify that
a known list of executables and static files are intact. In
other words, Keylime should be positioned to ensure existing
essential system components are not maliciously alerted (i.e.,
in compliance). Keylime cannot make reliable decisions on
unknown executables or unmonitored directories.

Limitations and Future Work. Our current experiments
are limited to Ubuntu Linux (Jammy Jellyfish 22.04). Future
work could include other operating systems for the test like
Red Hat Enterprise Linux (RHEL). In addition, our paper is
focused on Keylime since it is the only open-source solution
that is suitable for a production cloud environment (also
considering its real-world integration with Red Hat Enterprise
Linux, MicroOS, and cloud providers). Future work is needed
to explore whether the problems are generalizable to other
attestation frameworks for runtime/continuous integrity moni-
toring. Finally, our false negative experiments have a limited
number of attack categories/samples. However, these attacks
are within the scope of the attestation workflow and have
exposed problems that are universally applicable to similar
attacks (see Table II). Future work can test more diverse attack
types and attack samples to generalize the findings.

Responsible Disclosure and Result Sharing. We have
shared our findings with Keylime, the Linux kernel com-
munity, and RedHat. First, we reported the false positive
and false negative results to Keylime and received acknowl-
edgments. Second, we wrote a detailed report regarding the
issues associated with IMA and shared it with Linux kernel
developers. The community was receptive to the findings and
verified that IMA behaved as we observed in our experiments.
The community was welcoming to patches to address the
problems and had begun to discuss ways to develop them. For
example, they pointed out a recent effort on “script execution
control”, which offers a possible path to addressing the script
innovation problem in Keylime (a discussion has been added
to Section IV-C). Third, we shared our idea of dynamic
policy generation with RedHat. We are currently discussing
the feasibility of extending the scheme to RedHat and also
improving the file hash generation process for better security.

VI. ACKNOWLEDGMENTS

This work was supported by the IBM-Illinois Discovery Ac-
celerator Institute and the NSF Graduate Research Fellowship
Program under Grant No. 21-46756.



REFERENCES

[1] R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn, “Attestation-based
policy enforcement for remote access,” in Proceedings of the 11th
ACM Conference on Computer and Communications Security (CCS).
Washington DC, USA: ACM, 2004, p. 308–317.

[2] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote
attestation,” International Journal of Information Security, vol. 10, no. 2,
pp. 63–81, Jun. 2011.

[3] G. Chen, Y. Zhang, and T.-H. Lai, “Opera: Open remote attestation for
intel’s secure enclaves,” in Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS). London,
United Kingdom: ACM, 2019, p. 2317–2331.

[4] T. T. C. Group, “TPM Main Part 1 Design Principles,”
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-
Part-1-Design-Principles v1.2 rev116 01032011.pdf, March 2011.

[5] J. D. Osborn and D. C. Challener, “Trusted Platform Module Evolution,”
Johns Hopkins APL Technical Digest, vol. 32, no. 2, pp. 536–543, 2013.

[6] R. Haas and M. Pirker, “The state of boot integrity on linux - a
brief review,” in Proceedings of the 19th International Conference on
Availability, Reliability and Security (ARES). Vienna, Austria: ACM,
2024.

[7] A. Raghuramu, L. Cao, P. Sharma, M. Sánchez, J.-M. Kang, C.-N.
Chuah, D. Lee, and V. Saxena, “Metered boot: Trusted framework for
application usage rights management in virtualized ecosystems,” IEEE
Transactions on Network and Service Management, vol. 19, no. 3, pp.
2238–2250, 2022.

[8] S. Hosseinzadeh, B. Sequeiros, P. R. M. Inácio, and V. Leppänen,
“Recent trends in applying tpm to cloud computing,” Security and
Privacy, vol. 3, no. 1, p. e93, 2020.

[9] R. Wang and Y. Yan, “A survey of secure boot schemes for embedded
devices,” in 2022 24th International Conference on Advanced Commu-
nication Technology (ICACT). Pyeongchang, South Korea: IEEE, 2022,
pp. 224–227.

[10] AWS, “The security design of the aws nitro system,”
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-
of-aws-nitro-system/security-design-of-aws-nitro-system.pdf, 2024.

[11] Intel, “Runtime integrity measurement and attestation in a trust
domain,” https://www.intel.com/content/www/us/en/developer/articles/
community/runtime-integrity-measure-and-attest-trust-domain.html,
2024.

[12] Microsoft, “TPM attestation overview for azure,” https://learn.microsoft.
com/en-us/azure/attestation/tpm-attestation-concepts, 2024.

[13] W. Ozga, P. Sagmeister, T. Visegrády, and S. Dragone, “Scalable
attestation of virtualized execution environments in hybrid- and multi-
cloud,” arXiv 2304.00382, 2023.

[14] M. A. Silva, G. Almasi, J. Bottomley, L. Sturmann, and
M. Peters, “Keylime’s durable attestation makes security auditable,”
https://next.redhat.com/2023/04/25/keylimes-durable-attestation-makes-
security-auditable/, 2023.

[15] RedHat, “Red hat enterprise linux 9: Deploying keylime for
runtime monitoring,” https://docs.redhat.com/fr/documentation/red
hat enterprise linux/9/html/security hardening/proc deploying-
keylime-for-runtime-monitoring assembly ensuring-system-
integrity-with-keylime#proc deploying-keylime-for-runtime-
monitoring assembly ensuring-system-integrity-with-keylime, 2024.

[16] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-flat: Control-flow attestation for
embedded systems software,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS). Vienna, Austria: ACM, 2016, p.
743–754.

[17] M. Geden and K. Rasmussen, “Hardware-assisted Remote Runtime
Attestation for Critical Embedded Systems,” in 2019 17th International
Conference on Privacy, Security and Trust (PST). Fredericton, NB,
Canada: IEEE, Aug. 2019, pp. 1–10.

[18] F. Toffalini, E. Losiouk, A. Biondo, J. Zhou, and M. Conti, “ScaRR:
Scalable runtime remote attestation for complex systems,” in 22nd In-
ternational Symposium on Research in Attacks, Intrusions and Defenses
(RAID). Chaoyang District, Beijing: USENIX Association, Sep. 2019,
pp. 121–134.

[19] M. Morbitzer, B. Kopf, and P. Zieris, “GuaranTEE: Introducing Control-
Flow Attestation for Trusted Execution Environments,” http://arxiv.org/
abs/2202.07380, May 2022.

[20] W. Ozga, D. Le Quoc, and C. Fetzer, “TRIGLAV: Remote Attestation
of the Virtual Machine’s Runtime Integrity in Public Clouds,” in 2021
IEEE 14th International Conference on Cloud Computing (CLOUD).
Chicago, IL, USA: IEEE, Sep. 2021, pp. 1–12.

[21] W. Ozga, D. L. Quoc, and C. Fetzer, “Weles: Policy-driven runtime
integrity enforcement of virtual machines,” CoRR, vol. abs/2104.14862,
2021.

[22] CNCF, “Keylime,” https://keylime.dev/, 2024.
[23] ——, “Keylime Development — Gitub Repository,” https://github.com/

keylime/keylime, 2024.
[24] K. Foy, “Keylime security software is deployed to ibm cloud,”

https://news.mit.edu/2021/keylime-security-software-deployed-ibm-
cloud-0727, 2021.

[25] T. T. C. Group, “TPM 2.0 Library,” https://trustedcomputinggroup.org/
resource/tpm-library-specification/, 2004.

[26] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and imple-
mentation of a TCG-based integrity measurement architecture,” in 13th
USENIX Security Symposium (USENIX Security). San Diego, CA,
USA: USENIX Association, Aug. 2004, pp. 223–238.

[27] Linux, “TPM Quote Tools,” https://linux.die.net/man/8/tpm quote tools,
2024.

[28] K. Developers, “Overview of Keylime — Keylime Documentation
7.11.0 documentation,” https://keylime.readthedocs.io/en/latest/design/
overview.html, 2024.

[29] L. Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic integrity measure-
ment and attestation: towards defense against return-oriented program-
ming attacks,” in Proceedings of the 2009 ACM Workshop on Scalable
Trusted Computing (STC). Chicago, IL, USA: ACM, 2009, p. 49–54.

[30] E. Shi, A. Perrig, and L. Van Doorn, “BIND: A Fine-Grained Attestation
Service for Secure Distributed Systems,” in 2005 IEEE Symposium on
Security and Privacy (S&P). Oakland, CA, USA: IEEE, 2005, pp.
154–168.

[31] I. Pedone, D. Canavese, and A. Lioy, Chapter 26 Trusted Computing
Technology and Proposals for Resolving Cloud Computing Security
Problems. Sebastopol, CA: CRC Press, November 2020.

[32] N. Schear, P. T. Cable, T. M. Moyer, B. Richard, and R. Rudd,
“Bootstrapping and maintaining trust in the cloud,” in Proceedings of the
32nd Annual Conference on Computer Security Applications (ACSAC).
Los Angeles, CA, USA: ACM, Dec. 2016, pp. 65–77.

[33] D. G. Berbecaru and S. Sisinni, “Counteracting software integrity attacks
on IoT devices with remote attestation: a prototype,” in 2022 26th
International Conference on System Theory, Control and Computing
(ICSTCC). Sinaia, Romania: IEEE, Oct. 2022, pp. 380–385.

[34] Kylie Foy, “Lincoln Laboratory’s cloud-security software is re-
leased into Red Hat Enterprise Linux | MIT Lincoln Labo-
ratory,” https://www.ll.mit.edu/news/lincoln-laboratorys-cloud-security-
software-released-red-hat-enterprise-linux, Dec. 2022.

[35] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and
G. Tsudik, “VRASED: A verified Hardware/Software Co-Design for
remote attestation,” in 28th USENIX Security Symposium (USENIX
Security). Santa Clara, CA, USA: USENIX Association, Aug. 2019,
pp. 1429–1446.

[36] E. Bravi, D. G. Berbecaru, and A. Lioy, “A Flexible Trust Manager for
Remote Attestation in Heterogeneous Critical Infrastructures,” in 2023
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom). Napoli, Italy: IEEE, Dec. 2023, pp. 91–98.

[37] J. Pecholt and S. Wessel, “CoCoTPM: Trusted Platform Modules for
Virtual Machines in Confidential Computing Environments,” in Pro-
ceedings of the 38th Annual Computer Security Applications Conference
(ACSAC). Austin, TX, USA: ACM, Dec. 2022, pp. 989–998.

[38] A. K. Simpson, N. Schear, and T. Moyer, “Runtime integrity measure-
ment and enforcement with automated whitelist generation,” in Proc. of
ACSAC (Poster). Melbourne, Australia: IEEE, 2014.

[39] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang, “Remote
attestation to dynamic system properties: Towards providing complete
system integrity evidence,” in IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN). Lisbon, Portugal: IEEE, 2009,
pp. 115–124.

[40] N. Santos, K. P. Gummadi, R. Rodrigues et al., “Towards trusted cloud
computing.” HotCloud, vol. 9, no. 9, p. 3, 2009.

[41] N. Paladi, C. Gehrmann, and A. Michalas, “Providing user security
guarantees in public infrastructure clouds,” IEEE Transactions on Cloud
Computing, vol. 5, no. 3, pp. 405–419, 2017.



[42] M. Eckel, D. R. George, B. Grohmann, and C. Krauß, “Remote attes-
tation with constrained disclosure,” in Proceedings of the 39th Annual
Computer Security Applications Conference (ACSAC). Austin, TX,
USA: ACM, 2023, p. 718–731.

[43] J. G. Beekman, J. L. Manferdelli, and D. Wagner, “Attestation trans-
parency: Building secure internet services for legacy clients,” in Pro-
ceedings of the 11th ACM on Asia Conference on Computer and
Communications Security (ASIA CCS). Xi’an, China: ACM, 2016,
p. 687–698.

[44] V. Narayanan, C. Carvalho, A. Ruocco, G. Almasi, J. Bottomley, M. Ye,
T. Feldman-Fitzthum, D. Buono, H. Franke, and A. Burtsev, “Remote at-
testation of confidential vms using ephemeral vtpms,” in Proceedings of
the 39th Annual Computer Security Applications Conference (ACSAC).
Austin, TX, USA: ACM, 2023, p. 732–743.

[45] A. Whitehouse, “Ubuntu Explained: How to ensure security and stability
in cloud instances—part 2,” https://ubuntu.com/blog/ubuntu-updates-
best-practices-for-updating-your-instance, November 2023.

[46] SNAP, “Introduction to Snaps,” https://ubuntu.com/core/services/guide/
snaps-intro, 2024.

[47] ——, “Installing snap on Ubuntu | Snapcraft documentation,” https://
snapcraft.io/docs/installing-snap-on-ubuntu, 2024.

[48] J. Jellyfish, “Ubuntu 22.04.4 LTS (Jammy Jellyfish) — Index of /ubun-
tu/dists/jammy,” http://archive.ubuntu.com/ubuntu/dists/jammy/, 2022.

[49] C. Ubuntu, “Ubuntu kernels from Canonical | Ubuntu documentation,”
https://ubuntu.com/kernel, 2024.

[50] M. Ruffin, C. Wang, G. Almasi, A. A. Adeyabo, H. Franke, and
G. Wang, “Supplementary Materials,” https://tinyurl.com/3u54yypa,
2025.

[51] “Script execution control (was O MAYEXEC) [LWN.net],” Dec.
2024, [Online; accessed 19. Feb. 2025]. [Online]. Available: https:
//lwn.net/Articles/1001173

[52] OSTree, “Operating systems and distributions using ostree,” https://
ostreedev.github.io/ostree/, 2024.

[53] msmbaldwin, “Azure Attestation overview,” https://learn.microsoft.com/
en-us/azure/attestation/overview, Aug. 2024.


