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Abstract

Security Operations Centers (SOCs) face the key challenge
of handling excessive security alerts. While existing works
have studied this problem qualitatively via user studies, there
is still a lack of quantitative understanding of the impact
of excessive alerts and their effectiveness and limitations in
capturing true attacks.

In this paper, we fill the gap by working with a real-world
SOC and collecting and analyzing their network alert logs
over 4 years (115 million alerts, from 2018 to 2022). To fur-
ther understand how alerts are associated with true attacks,
we also obtain the ground truth of 227 successful attacks in
the past 20 years (11 during the overlapping period). Through
analysis, we observe that SOC analysts are facing excessive
alerts (24K-134K per day), but only a small percentage of the
alerts (0.01%) are associated with true attacks. While the ma-
jority of true attacks can be detected within the same day, the
post-attack investigation takes much longer time (53 days on
average). Furthermore, we observe a significant portion of the
alerts are related to “attack attempts” (attacks that did not lead
to true compromises, 27%), and “benign triggers” (correctly
matched security events but had business-justified explana-
tions, 49%). Empirically, we show there are opportunities to
use rare/abnormal alert patterns to help isolate signals related
to true attacks. Given that enterprise SOCs rarely disclose
internal data, this paper helps contextualize SOCs’ pain points
and refine existing problem definitions.

1 Introduction

A Security Operations Center (SOC) is an organization’s cen-
tral unit responsible for detecting, analyzing, and responding
to security threats [82]. A key challenge faced by SOCs is to
locate signals of true attacks from the noisy, unfiltered, and
uncorrelated security alerts [4]. Evidenced by a real-world
example, during the data breach of Target [26], security alerts

*The authors contribute equally to this paper (co-first authors).

were triggered before the attack, but the alerts were unheeded
(missed) by the SOC which failed to stop the attack in time.

Recently, researchers have conducted user studies with
SOC members to understand what affects the efficiency and
effectiveness of SOCs [4,20,24,37,69,70]. The results echo
that the overwhelming number of alerts generated by security
monitoring tools is a common concern [4, 37], which often
leads to alert fatigue or burnout of SOC analysts [70, 71].
While such user studies provide a qualitative view of people’s
perceptions, there is still a lack of quantitative understanding
of the impact of the excessive alerts, and their effectiveness
in capturing true attacks.

A key challenge for quantitative measurements, however,
is to obtain real-world data due to its sensitive nature. While
a few works have included SOC logs in their study [7, 12,
61,75], these datasets only cover a short period of time (e.g.,
weeks). More importantly, the data is only used for “black-
box” evaluations of their proposed detectors—often cases,
researchers did not (cannot) provide analyses of the data itself.
The most related paper is a recent study on a private rule
engine from a security company [76] to report statistics of rule
changes and false alerts. However, due to privacy concerns,
it did not provide detailed analyses of specific (successful)
attacks within its client networks (or how these true attacks
are detected and investigated).

Research Questions. In this paper, we fill this gap by
empirically analyzing the network logs within a real-world
SOC to explore the answers to the following research ques-
tions. First, what are the key bottlenecks in the SOC for threat
detection, and how do attackers exploit/respond to such bot-
tlenecks? Second, how excessive are the security alerts, and
what are the common reasons behind the alert triggering?
Third, how effective are the alerts to correlate or indicate
true/successful attacks?

To answer these questions, we obtained a network alert
dataset from the SOC of the National Center for Supercom-
puting Applications (NCSA) via collaboration (approved by
IRB). The alert dataset contains 115,617,526 alerts fired by
the SOC’s network monitoring tool in the past 4 years (2018—



2022). To further correlate network alerts with true attacks,
we obtained “ground truth” incident reports from the SOC’s
forensics analysis. The ground-truth set includes detailed
forensics reports of 227 true attacks' in the past 20 years
(2002-2022), and 11 of them occurred in the overlapping
period (2018-2022). We focus on network monitoring tools
since they serve a key role in analyzing attackers’ reconnais-
sance, compromise, and data exfiltration activities.

Key Findings. Our analysis returns several key findings.
First, we observe that humans are still the bottleneck, which is
reflected in various aspects of the SOC workflow. For instance,
the majority of the true attacks (65%) took more than one
analyst to investigate. While most of the true attacks were
detected on the same day (66%), the post-attack investigation
(primarily done manually) can take 53 days on average.

Second, our measurement shows that SOC analysts are fac-
ing excessive alerts (24K—134K per day), but only a small
percentage of the alerts (0.01%) are associated with true at-
tacks. A significant portion of the alerts is related to “attack
attempts” (at least 27%) that failed to cause damages. In addi-
tion, a large portion of alerts (49%) are benign triggers [37]
and can be safely ignored (i.e., correctly matched security
events with business-justified explanations”). We argue that
such “attack attempts” and “benign triggers” are essentially
noises in the data labels, and therefore pose a major challenge
to learning-based systems that aim to detect true attacks. To
the best of our knowledge, no public benchmark datasets are
actively measuring and modeling “attack attempts” and “be-
nign triggers” beyond simply classifying network traffic as
malicious or benign.

Third, by associating alert logs with true attacks, we find
that while the excessive alerts (false positives) are problem-
atic, the false negative problem is also concerning. Relying on
network monitoring alone has limited capability in capturing
the initial host compromise or stealthy post-attack activities.
For instance, 4 out of 11 true attacks investigated cannot be de-
tected by the network alerts. In addition, we empirically show
there are opportunities to use rare/abnormal alert patterns to
help isolate true attacks from other alerts.

Our analysis has positively impacted operational rules at
the SOC (e.g., adding new routing policies, §7.3). More impor-
tantly, in §8, we discussed key gaps in existing SOC practices
(e.g., log linkability, opportunities for automation), and made
recommendations to current and future ML-based research
that use SOC data to train detectors.

In summary, we present an empirical measurement of net-
work alerts within a SOC based on a dataset of 115 million
network alerts over four years. By associating alerts with true
attacks, we quantify the impact of excessive alerts and mea-

'We define “true attacks” as successful compromises that lead to damage
to the target network. This is different from “attack attempts” which refer to
malicious attacks that failed to achieve their goals.

2An example can be alerts fired correctly due to a vulnerable Java version,
but the SOC chooses to ignore it due to legacy systems [4].

sure the effectiveness of alerts to indicate true attacks. While
acknowledging the limitations and biases of the data (i.e., data
from a single SOC), we discuss the generalized lessons from
our work and provide recommendations for future research on
SOC tooling (especially ML-based approaches). To facilitate
future research and encourage result reproduction, we release
our code and a sample of the alert dataset [78].

2 Background and Related Work

Security Operations Center (SOC). SOC is an in-house
or outsourced unit responsible for monitoring information
technology (IT) infrastructures and responding to security
incidents [4,37]. SOCs have three important aspects: people,
processes, and technology [4, 82]. First, people: SOCs have a
team of security professionals with various duties and roles
(e.g., threat hunters, security analysts, and team managers).
Second, processes: SOCs involve various workflows in their
routine tasks such as vulnerability scanning and handling
alerts from Intrusion Detection Systems (IDS) or Security
Information and Event Management (SIEM) systems. SOCs
typically maintain a playbook [69] to document a standard pro-
cedure for communicating about and escalating alerts. Third,
technology: SOCs may deploy various technical tools to moni-
tor the network and hosts to detect attacks [4,16,42,53,57,80].

User Studies with SOC Members.  Researchers have
studied various challenges faced by SOC analysts by con-
ducting user studies. Existing studies have explored SOC
analysts’ perceptions of IDS usage [24], effectiveness of play-
books [69], system misconfigurations [3], malware detection
strategies [1], SOC performance evaluation metrics [1], the
“burnout” issues of analysts [70], and how analysts resolve
contradictions between people and tools [72].

In particular, Kokulu et al. [37] conducted an interview with
18 SOC members who expressed concerns about the high vol-
ume of unfiltered/uncorrelated alerts. However, surprisingly,
participants were not concerned about “false positives” (FPs)
of the detection tools. Alahmadi et al. [4] further interviewed
20 SOC members to explore the reasons. They revealed that a
common perception is that the majority of the “false positives”
are caused by benign triggers. Benign triggers are correctly
fired alerts but can be explained by legitimate behaviors in
the organization’s context (and thus are safe to ignore).

Our study complements and advances existing literature
(which are primarily qualitative user studies) by providing a
quantitative lens into the problems of security alerts and attack
investigation using real-world SOC logs. Also, with empirical
data across multiple years, we provide a longitudinal view of
how these problems evolve over time.

SOC Tooling. Researchers have proposed technical so-
lutions for threat detection and forensics for SOCs. These
solutions broadly include network intrusion detection sys-
tems (NIDS) [34,59,68,77,79], host-based IDS [15,21,25,
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Figure 1: SOC Workflow—The highlighted green boxes are
the main data sources for our paper. SIEM stands for “Security
Information and Event Management.”

27,43,56], alert triangle [5, 11, 12,28], verification [38], cor-
relation [61,63,66,75,80] and prioritization [30,40] methods,
provenance-based threat hunting systems [8,49], and attack
prediction models [7,67]. The goal of our work is not to de-
velop specific tools but to use real-world data to understand
the gaps between existing tools and the needs of SOCs.

A recent paper studied the rule engine used by a Managed-
Security-Service-Provider (MSSP) [76] to analyze rule
changes and (false) alerts triggered. The key differences are:
the prior study [76] was focused more on the relationship
between alerts and rule sets, whereas our study was focused
on the reasons for alert triggering (distinguishing benign trig-
gers, true attacks, and attack attempts). In addition, [76] did
not provide a detailed analysis of successful attacks within
the target networks/SOCs, possibly for privacy reasons. Our
paper provides a complementary view by diving deeper into
one network to analyze its successful attacks and correlate
them with alerts.

3 Datasets

We obtained and analyzed the data by partnering with the
cybersecurity team at the National Center for Supercomput-
ing Applications (NCSA), located at the University of Illinois
Urbana-Champaign. NCSA has been supporting open science
research by hosting the first sustained-petascale supercom-
puter, Blue Waters; and now operates the DeltaAl supercom-
puter supporting a wide range of workloads for scientific
discoveries. The center has thousands of physical nodes, tens
of thousands of computing cores, and 10+ petabytes of storage
interconnected internationally via a terabit network. The SOC
monitors the network/system and user activities leveraging
a wide spectrum of internal, open-sourced, and commercial
tools to detect and respond to security incidents. Figure 1
shows a simplified view of the process. The SOC analysts
use a Splunk dashboard for Security Information and Event
Management (SIEM) [41], which provides a real-time view of
security events collected by network monitoring tools, system
logs, Linux kernel audit logs, and other internal and external
data sources (e.g., blocklists, honeypots, threat intelligence).

Network Alert Dataset (2018-2022).  Our preliminary
dataset contains the network-level alerts fired between April

Term Definition

True attacks The attacker successfully compromised the

system and/or caused damages

Attack attempts  The attacker tried but failed to compromise
the system or cause damages

Benign activities that are incorrect
determined as security attacks

Correctly matched security events but have

business-justified explanations [4]

False positives

Benign triggers

Table 1: Definitions—Key terms used in the paper.

2018 and July 2022 by the SOC’s network monitoring tool
Zeek (a widely-used open-source tool [81]). As shown in
Figure 1, the SOC maintains a customized rule engine that
analyzes a variety of network and system logs to detect events
that match the pre-defined rules. The network monitoring tool
is one of the main sources of alerts. There are other alerts from
endpoint/host-IDS, partner sites, and other commercial tools,
to which we don’t have access. In other words, the dataset
represents a lower bound of alerts from this SOC.

In total, the dataset contains 115,617,526 network-level
alerts. Each alert is characterized by a timestamp, involved
IPs, an alert category, and other metadata. Starting from 2020,
the SOC implemented a Black Hole Router (BHR) [39] (see
Figure 1) to automatically handle a subset of these Zeek alerts
without human involvement (e.g., blocking IPs associated
with the alert) in real-time. As such, our dataset contains the
BHR label from 2020 to 2022.

Ground-Truth: True Attacks. To understand how effec-
tive these network alerts are in informing the SOC of true
attacks, we also gather data about the ground truth of success-
ful attacks and compromises in the past two decades. This
dataset is from “post-attack forensics”, as illustrated in Fig-
ure 1. The definition of true attack (see Table 1) is based on
whether the attacks have caused major degradation/interrup-
tion to system operation or whether there was evidence of data
leakage or system compromise. This dataset contains 227 true
attacks from January 2002 to March 2022. Among them, 11
occurred during the overlapping period with the alert dataset
(2018-2022). For each attack, SOC analysts collected a set of
attack artifacts (e.g., logs, binaries, VM images), conducted a
detailed investigation, and produced a report describing their
investigation process and conclusions. The reports were writ-
ten in an unstructured format, describing details about the
user accounts, IP addresses, or machines related to and/or
responsible for the attacks.

Is the Dataset Biased? = We believe the answer is “yes.”
Given the dataset was collected from a single SOC, we do not
expect the result to generalize to all SOCs. Instead, our goal
is to present an in-depth case study for a SOC-type that is
complementary to (different from) other existing studies. This
SOC'’s network has thousands of servers with 17,000+ active
users/researchers, and it represents a typical moderate/large-



sized research facility. The SOC has 9 members, which is
among the most common SOC team sizes (2—10) [64]. Note
that this SOC is SOC-2-Type-2 [2] certified, which testifies
to the legitimacy of its security infrastructure. The SOC’s
network is segmented where certain parts are heavily guarded
while other parts are configured as “open networks.” The open-
network setting allows both users within the research center
and researchers outside of the network to access the computa-
tion nodes. This presents a unique contrast with enterprise/pri-
vate networks that usually have a strict firewall to secure the
perimeter (i.e., the access to internal resources is usually not
openly shared with external parties). In this open network,
both malicious and legitimate connections may come from
anywhere in the world, making it difficult to flag attacks. Such
open-network configuration is common for open research in-
frastructures. The SOC may not represent those of govern-
ment agencies or large companies, but one useful context
is this research institution not only supports scientific com-
puting but also runs government/military applications. The
incidents observed by this SOC are diverse because it not only
monitors open networks (recording popular incidents such
as volumetric DoS, password guessing, or database ransoms)
but also monitors special network segments of closed systems
that work with highly regulated industry partners (HIPAA in
healthcare) and CUI data with national labs (recording sophis-
ticated incidents such as zero-day exploit privilege escalation
and lateral movement to national labs).

To better interpret our results, we note the following lim-
itations of this data. First, the data is from a specific SOC,
and thus the result may be biased due to the specific SOC
type, size, certification, and network characteristics. These
factors should be considered for our result discussion (e.g.,
in §8). Second, the alert dataset is focused on network alerts
which is a lower bound of all alerts in the SOC. The results
and observations may not be applicable to host-level alerts or
Endpoint Detection and Response (EDR) systems.

What’s the Value of Analyzing Private Data? Consid-
ering that real-world SOCs rarely share their internal attack
details, we believe the data can provide a unique opportunity
to quantify the problem related to alert filtering and investi-
gation and study the longitudinal changes of a SOC’s threat
investigation practice. Based on our analysis, we believe some
of the observations and findings have broader/generalized im-
plications, which will be further discussed in §8.

A key challenge of analyzing private datasets is the repro-
ducibility of results. This is a long-standing challenge to the
community. We believe this type of analysis is beneficial with
strong evidence demonstrated by prior works. For example,
our community has published papers based on private data
(from a single organization) [22,30,31,74,76], providing new
insights into established problems, revealing emerging threats,
as well as challenging existing false beliefs and assumptions.

To mitigate the concerns about reproducibility, we plan to
publish all the code developed in the project. We also have

worked with the SOC and obtained the approval to release a
sample of the network alert dataset. Details are in §8.3.

Ethical Considerations. The study was reviewed and ap-
proved by our IRB. Given the sensitive nature of the data,
the dataset has been stored on the SOC’s internal server and
the researchers can access the server to perform analysis.
One SOC member oversees the data analysis process to en-
sure compliance with the SOC’s policies. The log data does
not contain user-identifiable information except for the IP ad-
dresses. For most analyses, we used the hashed IPs (accessible
by the whole research team). Only researchers who worked
closely with the SOC team can access the IPs with the last
octet removed, which is only for case studies.

Positionality Statement. Throughout this project, we care-
fully reflected on our position as researchers and inspected
how our backgrounds may have influenced the analysis and
results. The authors of this paper have the collective knowl-
edge and expertise in network/system security research, se-
curity management and operations, incident response, and
machine learning. The team is diverse, including both aca-
demic researchers and industry practitioners, and one of the
co-authors is affiliated with this SOC. We acknowledge that
our background and position may introduce biases. For exam-
ple, during manual investigation of a given attack (and their
alerts), the investigation process can be influenced by the
team member’s knowledge of the target SOC and their prior
experience with similar attacks. Another example is related
to benign trigger identification (see §6.4) which is highly
dependent on the knowledge of the SOC’s alert system and
the organizational context.

Roadmap. In the following, we start our analysis with a
case study of one true attack by associating attacker steps
with the triggered alerts (§4). This is to illustrate how the
dataset can be used for such analysis. Then we perform a
more systematic analysis of true attacks (§5), triggered alerts
(§6), and the attack-alert association (§7).

4 Case Study: Postgres Compromise

In November 2021, an attacker successfully compromised an
internal host through a misconfigured Postgres (PostgreSQL
database management system). We analyze the incident report,
and the alert dataset to recover the attack process in Figure 2.

Attack Process. On the day before the actual attack, the
attacker made several attempts to connect to different hosts
(ports 8081, 9001, and 9999) without success. Eventually, at
03:42 AM of November 10, the attacker found a vulnerable
port (5432) that allowed the attacker to connect to the victim
server D via Postgres. Immediately at 03:44 AM, the attacker
downloaded three files to server D (at least one of the files
was later confirmed to be malicious). After the server was
compromised, the attacker used the compromised host to scan
external IPs. They first scanned at least 250 hosts on port
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Figure 2: Postgres Case Study—The attacker successfully compromised an internal server D using a Postgres vulnerability. After the
compromise, server D was used to scan and perform password guessing against external hosts.

8888, then attempted 1,069 HTTP basic access authentica-
tions. Meanwhile, they also scanned 110 subnets, and run
password guessing over 5,164 connections. The scanning ac-
tivities started shortly after the host compromise until 07:11
AM (when the SOC took the host offline).

During 03:37-03:59 AM, the attacker attempted to find
other vulnerable hosts by scanning (at least) 35 hosts within
the organization’s network on ports 5432, 9999, 80, and 8088.
These scanning activities were picked up by Zeek and then
were automatically blocked by BHR.

Alerts Triggered. No alert was triggered before or during
the host compromise. The first alert was sent at 03:44 AM
because the victim host scanned 250 unique hosts on port
8888 within 5 seconds. Between 03:44 and 07:11 AM, there
were 1,069 alerts fired on HTTP basic access authentication,
15 alerts on invalid certification, 7 alerts on SSH password
guessing, 5 alerts on subnet scanning, and 4 alerts on host
scanning. In total, 1,101 alerts were triggered including 1,100
alerts on host D and 1 alert on the attacker IP. The alert on
the attacker IP was triggered at 03:59 AM when the attacker
scanned 35+ unique internal hosts.

Our analysis confirms that the number of alerts on host
D is abnormally high. As a reference, we compute the aver-
age number of alerts per host within a 4-hour window during
12/2020-07/2022, which is only 0.14 with a standard devia-
tion of 12.65. Host D has 1,100 alerts during the 4-hour attack
window, which is more than three standard deviations away
from the mean value.

SOC Response.  Although the alerts were triggered shortly
after the compromise, it took some time for the SOC analysts
to effectively respond to the attack. At 07:11 AM, an analyst
recognized the incidents and immediately blocked access to
and from the victim host D. Around 08:10 AM, one of the
downloaded files was confirmed to be malicious through third-
party vendors. During the day, the SOC analysts extracted
the attacker IPs from the log. Around 06:00 PM of the same
day, the SOC blocked external access to Postgres for certain
servers. It took more time to gather artifacts (logs) and recover
the snapshot of server D (which requires assistance from
other teams). A month later (December 23), the snapshot was

created for forensics analysis. The post-attack investigation
has a long delay (which is common, see §5).

Root Causes. While the Postgres server running on the vic-
tim host was publicly accessible, the root cause was misconfig-
ured authentication. One of the usernames had no configured
password and the attacker was able to use this username to
gain access and then download malicious files. It is a combi-
nation of improper security practices of users (open Postgres,
a lack of authentication) and SOC issues (insufficient internal
scanning/screening).

Attacker IP Analysis. We further searched the attacker
IP in the network connection log for the entire year of 2021
to examine whether the attacker has attempted to connect to
any internal hosts before the attack date. We find that, about
one month before the attack, the attacker made five separate
scans (on at least 175 hosts, including the later compromised
host) on five different days (which raised 5 alerts). The result
indicates that the alert system may have captured the early
attacker activities before the actual attack but the signals are
not strong enough to raise attention.

Remark 1: This case study has two takeaways: (1) While
the alert system have helped to capture the attack, it still
missed the initial host compromise. If the attacker had
chosen to stay dormant after the compromise, it could be
difficult to detect. (2) The attackers made multiple attack
attempts way before the actual attack, which presents an
opportunity for early interventions.

5 Ground Truth of True Attacks

The case study above (§4) is only based on one true attack.
In this section, we analyze the broader set of ground truth
of true attacks based on the forensics reports. As shown in
Table 1, our definition of true attacks refers to those that lead
to successful compromises or damage to the target network.
This differs from artack attempts that fail to achieve the at-
tack goals. Through this analysis, we examine what types
of attacks have led to successful compromises, and the key
bottlenecks in the threat detection/investigation process.



Available Info in Report # of Reports (%)

Total 227 (100%)
Break-in Method Identified 178 (78%)
Consequence Identified 203 (89%)
Attacker IP(s) Identified 151 (67%)
Attack Start Time Identified 123 (54%)
Attack Discovery Time Identified 167 (74%)
Involved Analysts Identified 107 (47%)

Table 2: True Attacks—Attack reports where certain attack de-
tails were recovered and documented.
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Figure 3: Occurrences of MITRE Technique IDs per year
related to the break-in methods.

Given that reports are largely unstructured, we have two
researchers manually annotate the reports which took 1-2
months to complete. Due to space limit, we describe the de-
tailed coding method in Appendix A. For each attack, we
extract the attacker/victim IPs, attack start time (¢1), attack de-
tection time (#,), and investigation end time (#3). Here, “attack
start time” is the earliest timestamp of the attacker activity that
is directly associated with the compromise. The determination
was made by the SOC analysts based on their investigation.
We also report the number of analysts involved in the in-
vestigation (if the information is available). For each attack,
we refer to the MITRE Adversarial Tactics, Techniques, and
Common Knowledge (ATT&CK) Framework [51] to anno-
tate the high-level techniques of attackers. For brevity, we
only identify the MITRE techniques that best describe (1)
how the attacker broke into the system, and (2) the attack con-
sequences. Not all incident reports are conclusive and contain
the full attacker information. As shown in Table 2, for 78%
of the true attacks, the SOC analysts reached the conclusion
about the attackers’ break-in methods. For 73% of the attacks,
the reports had information about the attack consequences.
The attacker IP(s) were identified in 67% of the reports. Also,
the timing information (e.g., when the attack started) was not
always easy to confirm (available in 54% of the reports).

True Attacks Over Time. Figure 3 shows the occurrences
of MITRE tags from 2002 to 2022 for the break-in meth-
ods. A similar figure is plotted for “attack consequences” in
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the supplementary materials [78]. Overall, the most common
break-in method is using (stolen) credentials from existing
valid user accounts (T1078), followed by using malware or
exploiting vulnerabilities (T1587). For attack consequences,
the most common consequence is the compromise of server-
s/hosts (T1584). Also, attackers may steal more user creden-
tials (T1586), perform denial of service attacks (T1498), and
use the compromised servers to scan other hosts (T1595).
More detailed results are in the supplementary materials [78].

We find that the overall attack trend correlates with the
known changes of the SOC infrastructure. Before 2011, the
SOC’s security infrastructures/policies were not well estab-
lished. During 2010-2011, the SOC had a major upgrade on
its security infrastructure by adding new capacities in logging,
monitoring, and threat response, recruiting new members to
the SOC team, and implementing two-factor authentication
(2FA) for accessing the computing nodes. This may corre-
late to the different number of true attacks before and after
2010. However, we want to emphasize that this should only
be interpreted as a correlation, and does not necessarily reflect
causality [9]. There are other possible explanations such as
the underlying changes in attack trends, and the improved
cooperation proficiency after reorganization. We don’t have
the data for a full causal analysis to rule out other factors.

Analysts Involved.  As shown in Table 2, 107 of the re-
ports have clearly documented the analysts involved in the
investigation. Using this set, we find that the majority (65%)
of attacks need two or more SOC analysts to work together
for attack investigation. This echoes prior works that describe
the SOC pipeline as a collaboration process [24]. Some of the
attacks involved a large number of people (e.g., 6-7), includ-
ing people outside of the core SOC team at other institutions
(e.g., network administrators) who helped to provide extra
context information about the attack.

Time took for Post-Attack Analysis. While it is generally
quick for the SOC to identify most of the attacks (e.g., 66%
are within the same day, see Figure 15), it takes a long time
to investigate and understand the attack. If we compute the
investigation time (only 28 attacks after 2016 had related
timestamps), the average post-attack investigation time is 53.2
days with a maximum of 253 days.



20%| 20%
15%| 15%

10%

Percentage
Percentage

S
=X

5%

@
X

00724 6 8 10 12 14 16 18 20 22 007274 6 8 1012 14 16 18 20 22
Hour of Day Hour of Day

Figure 6: Hour of day for at- Figure 7: Hour of day for at-
tack start time. tack discovery time.

Attack during Off-Hours. We further examine the “day
of the week” pattern for attack start time and attack discovery
time, respectively. We consider all the true attacks that can
provide corresponding timestamps, and all timestamps are
based on the SOC’s local time. As shown in Figure 4, the
attack start time is fairly evenly distributed, slightly skewing
to Saturdays. Figure 5 shows the attack discovery time by the
SOC, which indicates that Sundays are the least common days
to detect attacks. In contrast, Monday is the most common
day to discover attacks when the full team is available.

Figure 6 and Figure 7 further illustrate the “hour of the day’
pattern. This analysis needs more fine-grained timestamps
(hour-level), which further limits the number of qualified at-
tacks (88 and 91, respectively). The data shows that more
attacks started during the off-hours of the SOC (i.e., midnight
to 8 AM, and then 6 PM to midnight) than during the work-
ing hours. Note that we don’t have evidence that attackers
intentionally target the SOC’s off-hours. An alternative ex-
planation is that certain attackers’ working hours happen to
overlap with the SOC’s off-hours, due to time zone differ-
ences. In Appendix A, we attempt to convert the attack start
time based on the attacker IP’s local time to provide further
insights. In contrast, most of the attacks were discovered by
the SOC during working hours (peaking at 8-10 AM). While
the SOC operates 24/7, there are more people available dur-
ing working hours than off hours. Overall, the result suggests
that attack discovery is more aligned with human analysts’
working hours. As such, attacks that happened during SOC
off-hours can have extra delays for detection.

1)

Remark 2: Human analysts are still the bottleneck: (1)
it usually takes more than one analyst to work on a single
attack; (2) Attack detection is more aligned with the SOC
analysts’ working hours, which can cause delays to attack
discovery.

6 Network Alerts

In this section, we explore how alerts are fired by the network
monitoring tool and answer the following questions: How
often are the alerts associated with malicious activities? To
what extent can the SOC analyze and take actions on these

Time Range | Days | # Alerts Alert/Day  Unigq. IPs
04/18-08/20 751 101,187,992 134,738 17,364,456
12/20-07/22 578 14,429,534 24,965 1,869,671
Total ‘ 1,329 ‘ 115,617,526 86,996 19,040,194

Table 3: Alert Dataset—The alert dataset covers two time pe-
riods. During the first period, the SOC did not have an auto-block
mechanism yet. During the second period, the auto-block mecha-
nism (BHR) helped to automatically block IPs that triggered certain
alerts (6,474,204 blocked alerts, 44.9%).

alerts automatically? What are the common reasons behind
the fired alerts and the challenges to reason the alerts?

6.1 Excessive Alert Volume

Table 3 summarizes the alert dataset which covers 1,329 days
and contains 115,617,526 alerts (about 86,996 alerts per day).
Figure 8 plots the number of daily alerts (in millions) over
time. We observe that, during the first period (April 2018 to
August 2020), the average number of daily alerts is 134,000,
which is 5-6 times higher than the 24,000 alerts per day in
the second period (December 2020 to July 2022). In partic-
ular, there was an abnormally large number of alerts during
early 2018, when the network was faced with intensive ad-
dress scanning from external IPs (from a new variant of Mirai
botnet). Also, major peaks showed up in early 2022 which
were caused by the scanning for the Log4j vulnerability! and
alerts fired by internal logging systems. The excessive number
and the high variance of daily alerts make staff planning and
workload allocation a challenging problem.

Automated Alert Handling. In the second period, the SOC
implemented a Black Hole Router (BHR) [39] and firewall
rules to automatically handle a subset of alerts without hu-
man involvement in real time (e.g., blocking IPs associated
with the security alert). 6,474,204 alerts are handled by BHR
during the second period (44.9%) without involving human
analysts. Many of these alerts are associated with attack at-
tempts that match high-confident signatures and some may
involve known benign triggers (e.g., scanning from third-party
security vendors, see §6.2). Even so, after BHR filtering, there
are still a large number of alerts that need to be handled and
processed by analysts (about 13,764 alerts per day).

Remark 3: About 44.9% of the alerts can be han-
dled/blocked automatically without human involvement.
However, after auto-block, there is still a large volume of
daily alerts that cannot be handled automatically.

Log4; is a high-severity zero-day vulnerability that involves remote code
execution in Log4j (disclosed in November 2021) [18].
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Figure 8: Number of Daily Alerts—We plot the two time periods separately under different y scales. Note that the first period (2018-2020)
has a significantly higher number of daily alerts than that of the second period (2021-2022).

6.2 Complex Reasons for Triggering Alerts

Next, we use the alert datasets to understand the reasons
why alerts are triggered. For this analysis, we focus on the
second period (2020-2022), because (1) the rule sets are more
optimized to reduced alerts; and (2) only the second period
has auto-blocking BHR, which is important for identifying
attack attempts. At a high level, we categorize the reasons
into several categories (Table 4).

True Attacks. True attacks refer to incidents where the
attacker successfully compromised the system and/or caused
damages. Since successful attacks are rare (see §5), the num-
ber of alerts is also small (1,114, 0.01%). Further analysis is
presented in §7.

Attack Attempts.  Attack attempts are those that (1) were
initiated by malicious attackers, but (2) did not manage to com-
promise the system or cause damage. For our analysis, we rely
on the auto-blocking mechanism (BHR) to flag ground-truth
attack attempts. Recall that BHR is designed to be “conserva-
tive” to only block attack attempts that match high-confidence
signatures/patterns. Through our analysis, we find that not
all the BHR alerts represent attack attempts (many of them
turned out to be benign triggers, see §6.4). In total, 44.9% of
the alerts are BHR-blocked—after excluding benign triggers
in them (about 17.50%), we located 27.37% alerts that are
associated with attack attempts (see §6.3).

Benign Triggers.  Alerts that are neither “true attacks” nor
“attack attempts” cannot be simply marked as false positives
(FP). Many of them can be benign triggers. Benign triggers [4]
are correctly fired alerts, explained by business-justified, ac-
ceptable behaviors in the organization’s environment. As such,
analysts may choose to ignore them. An example would be
an alert fired correctly because a weak SSL key is detected,
but SOC can ignore the alert knowing the host is retiring and
disconnected from the public network. This definition is dif-
ferent from the generic “false positives” which usually refer
to alerts that are incorrectly fired on benign behaviors (e.g.,
due to bad rules, errors, or misconfigurations). Identifying
and attributing benign triggers is a non-trivial task. We found
evidence that 48.91% of the alerts had benign triggers, and
we detail the challenges encountered in §6.4.

Alert Type | #of Alerts | Percentage
True Attacks 1,114 0.01%
Attack Attempts 3,948,645 27.37%
Benign Triggers 7,057,012 48.91%
Unknown 3,422,763 23.72%
Total | 14,429,534 | 100%

Table 4: Reason of Alerts— We categorize different reasons for
triggering alerts during the period of 12/2020-07/2022.

Unknown. The remaining alerts (23.72%) are marked
as “unknown” since we cannot easily/confidently determine
their causes. They could be a mixture of attack attempts, un-
known benign triggers, false alerts, or even true attacks that
are missed by the SOC team. We will further analyze them
by statistically comparing them with other alert categories,
especially true attack alerts, in §7.2.

6.3 Understanding Attack Attempts

First, we focus on the 3,948,645 alerts from the second pe-
riod (2020-2022) that are associated with the attack attempts
blocked by BHR, to characterize attacker behaviors.

Geolocation of Attacker IPs. We start by analyzing where
the attacker is coming from. For this analysis, we identify
external attackers that are blocked by BHR, i.e., the source IP
is an external IP (outside of the research center) and the desti-
nation IP is an internal IP of the research center. The blocked
external IP is then labeled as an attacker IP and the internal
IP is labeled as the victim IP. In total, we identified 721,169
attacker IPs. By mapping the IPs to their country/region codes
(using Maxmind database [46]), we find that the attacker IPs
are from all over the world (223 countries/regions). The top
five countries are China, the US, India, Brazil, and Germany
(see more details in the supplementary materials [78]).

Types of Attacks. Table 5 lists the top five alert categories
associated with the blocked attack attempts. We observe that
the vast majority of the blocked attack attempts are related to
network scanning (3 out of 5 categories, 96.7% of the alerts).
The other 2 out of 5 are related to brute-force SSH password
guessing and suspicious SSH clients.



Count (%)

3,368,776 (85.3%)
384,247 (9.7%)
63,676 (1.6%)
58,879 (1.5%)
40,747 (1.0%)

Alert Description \

Address Scan
Random Scan
Port Scan

SSH PSW Guess
Bad SSH Client

Table 5: Top 5 Alerts—Descriptive categories for the top 5 alerts
since we cannot present the exact alert name from the SOC.

Setting # Alerts # Alerts w/ Unigq. # of

Victim Identified  Victim IPs
Before IP Recovery | 14,429,534 7,531,038 18,115
After IP Recovery 49,478,207 37,378,465 69,356

Table 6: Victim IP Recovery—For network scanning related
alerts, the victim IP is not directly available in the alert due to alert
aggregation. We recover victim IPs from net connection logs.

Victim IP Recovery. To further analyze attacker behav-
ior, we need to map the attacker-victim pairs based on the
alert. Unfortunately, to reduce the volume of scanning alerts,
Zeek has suppressed and aggregated multiple scanning alerts
from the same attacker IP into a single alert (as a summary).
For example, if an attacker scanned 200 IPs, a single alert
is recorded in the log to summarize the activity but the list
of 200 scanned hosts is omitted from the alert. This creates
difficulties for attributing the victim hosts. As shown in Ta-
ble 6, among the 14.4 million attack-attempt alerts, we can
only identify victim IPs for 7.5 million (52%).

To recover the victim IPs, we worked with the SOC to
correlate the alert data with network connection logs. The net-
work connections logs are several orders of magnitude larger
than the alert log, which can only be stored for two years. As
such, we can only perform this recovery analysis for 2020—
2022 period. Given an alert, we search the connection log of
the same day to identify connections with a matching source
IP (attacker IP) and the destination port for each alert. This
means a single alert summary will be expanded to multiple
alerts (one for each victim host). As a result (see Table 6), the
number of alerts is increased to 49 million, and the number
of victim IPs is increased from 18K to 69K. This recovery
method is not necessarily sustainable because the connection
logs will be deleted after two years due to its enormous stor-
age requirement. We will use this extended dataset for the
following analysis.

Remark 4: The SOC applies alert suppression and aggre-
gation to reduce alert volume; however, this process also
leads to information loss (e.g., victim IPs, timing), which
creates difficulties for attack analysis and victim attribution.
Improvements are needed to preserve key metadata during
alert aggregation.
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Figure 11: Activities of the Most Active Attackers over
Time—Top 15 attackers with the highest number of active days.
Each row (y-axis) represents one attacker. The color of the dot
represents the number of alerts from this attacker for a given day.

Recurrent Attackers. Next, we examine how persistent the
attackers are. In other words, once the attacker IP is blocked
by BHR (for some period), how likely will they make more
attack attempts? Here, for each attacker, we define their active
days as the number of days when they made attack attempts.
Figure 9 shows the Cumulative Distribution Function (CDF)
for the number of active days per attacker IP. We observe that
about 75% of the attacker IPs are only active for one day,
indicating they are short-lived. However, a small portion of
them (0.3%, 28 IPs) have more than a week of active attempts,
indicating a high level of persistence.

To understand the activity patterns of top attackers, we plot
the heatmap in Figure 11 for the top 15 most active attackers
(that had at least 26 days of active attack attempts). The top-1
IP is making active attempts for 573 days. After investigation,
we discover that this is an (undocumented) external scanner
set up by one SOC member to test the BHR system. Other IPs
are attacker IPs. Some attackers (e.g., ID=2, 3, 4, 5, 6) had
continued with their attack attempts for a concentrated period
of time (e.g., several weeks or even months) before stopping.
Other attackers (e.g., ID=7, 8, 9) spread their attack attempts
across time, and persistently return after certain time gaps.

Uneven Alert Distribution of Victims. Finally, we find
that not all victim IPs are evenly targeted. In Figure 10, we
sort the victim IPs based on the number of associated alerts
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Figure 12: P-value from Hypothesis Test to Detect Bots —
The null hypothesis is that the attack connection occurred at random
intervals. A lower p value allows us to reject the null hypothesis with
statistically significant confidence. p < 0.05 indicates regularity of
connection timing, which is a strong indicator of bots.

on the x-axis and report the accumulated percentage of alerts
on the y-axis. We observe that a very small portion of victim
IPs (1,576, 2.3%) contribute 55% of the total alerts. Then
the rest of the IPs (67,780, 97.7%) contributed the rest of
45% of the alerts. This represents an uneven distribution of
alerts across hosts. We confirmed with SOC that some of
these most-targeted hosts were running services with open
access via the public Internet (i.e., more alerts). The skew-
ness is also reflected by the number of alerts per host—while
the maximum number is 388,502 alerts, the median is only
203 alerts per host (over 2 years). Prior works have proposed
per-host models for anomaly detection or alert/event predic-
tion [10, 14,32, 67]. The skewness of the event distribution
can create challenges for such models.

Botnets vs. Manual Attackers. A particular question of
interest is whether the attack attempts are made by human
attackers or botnets. This is a difficult question to answer for
two reasons. First, many attack attempts are “short-lived” (or
quickly blocked by BHR; see Figure 9), resulting in insuf-
ficient data for our investigation. Second, manual attackers
may still use attack software which may exhibit signals of
automation. For this analysis, we consulted a SOC analyst
and decided to rely on known heuristics of botnets, i.e., the
time intervals of botnet connections often exhibit a high level
of regularity. As such, we formulate attackers’ connection
time intervals into time series, and run a statistical test to
determine their randomness. We select the Ljung—Box statis-
tical test [44], which is widely used in time series analysis.
Ljung—Box test helps determine whether the autocorrelation
coefficients at various lags in the time series are significantly
different from zero. To make sure the statistical test returns
meaningful results, we select attacker IPs with at least 5 con-
nections (37.17% qualified IPs)—the rest of the attacker IPs
unfortunately are deemed to have insufficient data for this
analysis. The distribution of p-value is reported in Figure 12.
Time series with a p-value near 0 represent attacker IPs that
have highly regular time intervals (i.e., rejecting the null hy-
pothesis), indicating bot behavior. We take p < 0.05 as the

Category \ Description of Alerts \ # of Alerts
Internal Scan ‘ Legitimate scan ‘ 194,518
External Pen-test ‘ Various alerts ‘ 2,694,851
External domain w/ local IP 1,407,151
DNS External DNS server 28,698
Excessive DNS queries 26,555
Weak key 30,570
SSL Weak cipher 6,909
Old SSL version 2,339
Logging failure 2,553,794
Non-Attack New IP address space 138,630
New host added 3
Services w/ Exceptions ‘ Various alerts ‘ 260
Total: 7,057,012

Table 7: Benign Triggers— Types of benign triggers and the
number of alerts. The alerts under different categories may overlap
(e.g., internal scan alerts may include DNS/SSL-related alerts), and
the total number is the union of these alerts.

threshold, which is the commonly used value in statistical
tests. We estimate that the majority (66.22%) of the attacks
that made more than 5 connections are botnet-driven.

Remark 5: We show that the vast majority of attack at-
tempts are short-lived but persistent attack attempts exist.
The highly uneven distribution of security alerts among
hosts may create challenges to developing per-host secu-
rity prediction models. Many recurrent attackers display
characteristics consistent with botnets.

6.4 Understanding Benign Triggers

Prior works conducted user studies to study how SOC ana-
lysts perceive false positives (FP) [4,37], and concluded that
most FPs are benign triggers [4]. In this section, we examine
benign triggers quantitatively. Identifying benign triggers re-
quires specific knowledge about the organization’s network
and context [4]. As such, we worked with two SOC analysts
to go through each alert category and apply rules/heuristics
to filter out alerts of benign triggers. The rules are intention-
ally conservative as we only flag those with clear evidence
of benign triggers (i.e., a lower bound). This process requires
extensive manual efforts. The identification either requires
manually constructing an allowlist of IPs where certain alerts
are safe to ignore based on organizational context or by filter-
ing candidate alerts and manually confirming their legitimacy
with additional inquiries (to users or admins). Certain benign
triggers can be filtered automatically (e.g., logging failures)
without manual inspection. Due to the space limit, the detailed
methodology is documented in Appendix C and Table 9. In to-
tal, we identified 7.05 million benign triggers (48.91% of the
total alerts during 2020-2022) and a breakdown of specific
reasons is shown in Table 7.



Internal Scan.  The first common cause of benign triggers
is scheduled internal scanning to proactively check for vul-
nerabilities and misconfigurations. These scans have similar
behavior patterns as malicious scans, but the alerts can be
safely ignored. We attempted to identify internal scans based
on the dedicated scanner IPs. This returns 194,518 alerts.

Surprisingly, we observed another set of 384 internal IP ad-
dresses within the research center that have triggered network
scanning alerts (scanning other internal or external hosts).
Since they are not immediately attributed to benign triggers,
we regard them as “unknown” for manual investigation. The
detailed investigation is documented in the supplementary
materials [78]. Anecdotally, we confirm there are web scrap-
ers/crawlers running on internal IPs and legitimate internal
scanners set up by other units of the institution (that are not
well communicated with the SOC), or scanners set up by SOC
members (that are not well-documented as those in Table 7).
These all create challenges for tracking benign triggers.

External Pen Test. The SOC also worked with third-party
(external) security vendors to perform penetration tests and
the annual compliance auditing. The corresponding alerts are
identified based on known vendor IPs (2.7 million alerts).
While the external scanners have triggered varied types of
alerts such as address scan, port scan, and vulnerability scan,
the majority (92%) are related to Log4j in early 2022.

DNS Configurations.  We identified benign triggers re-
lated to DNS services (1.4 million), and the vast majority are
triggered due to external domains hosted under a local/inter-
nal IP. The detection rules are designed to capture internal
host compromises. However, the research center often has
collaborative projects with other organizations and there are
websites (with external domain names) hosted on internal IPs.
Similarly, benign triggers related to “external DNS server”
happen when an internal host changes its default DNS server
to unknown external DNS servers. This is supposed to capture
DNS tunneling attacks (for data exfiltration), but alerts are
triggered by these collaborative projects. Finally, “excessive
DNS queries” means the number of DNS queries surpasses
a daily threshold. We locate benign triggers as those that
exclusively query the internal DNS (i.e., low risk).

SSL and Legacy Systems.  Benign triggers related to SSL
(e.g., weak key, weak cipher, old version) are mostly due to
legacy systems—SOC determined they are either difficult
to change or safe to ignore. This is consistent with what
is reported in prior work [4]. Their detection is based on
(manually) mapping out the IPs of internal legacy systems
and then matching the alert types.

Alerts for Information Purposes. More than 2.5 million
alerts are not related to attacks but are generated for informa-
tion/context purposes. For example, most of such alerts are
related to logging failures from Zeek. Others are related to
new IP ranges or hosts added to the network.

Services with Exceptions.  Finally, SOC analysts provided
an allowlist of IPs that host special services with legitimate
reasons for triggering certain alerts. For example, certain pro-
visioning services are allowed to move large data around
the network. Certain legitimate devices are known to trigger
ArpScan alerts. This category only has 260 alerts.

Remark 6: We quantitatively show that benign triggers
count for a significant portion of alerts (at least 48.91%).
However, benign triggers are caused by complex reasons
which are challenging to attribute. (1) Not all benign trig-
gers are well-documented by the SOC and it took signifi-
cant (manual) efforts to gather evidence and craft rules to
flag them. (2) Even after these efforts, a major portion of
alerts still can not be determined (23.77% unknown).

7 Linking Alerts with True Attacks

So far, we analyzed the large volume of alerts (§6) and the
relatively small number of true attacks (§5). In this section,
we focus on the overlapped periods of the two datasets (2018—
2022) to correlate them. We aim to answer the following
questions: are alerts successfully triggered during true at-
tacks? Did the SOC use the alerts to identify the attacks?
What characteristics of alerts would indicate true attacks?

7.1 Analyzing True Attacks

A case study of alert-attack association has been presented
in §4. Here, we expand the analysis to examine the general
effectiveness of alerts, we perform a similar analysis for all
of the true attacks during the overlapping period (11 true
attacks). As shown in Table 8, out of the 11 successful attacks,
7 attacks involve host compromise via existing user accounts,
2 involve host compromise via vulnerabilities, 1 case involves
exploiting an open port to run reflection DoS attacks, and 1
case involves internal policy violation (crypto mining).

In Table 8, we attempt to map related alerts to these true
attacks (under the guidance of the SOC analysts). Given a
true attack (and its detailed incident report), we first identify
the attacker IPs as well as the IPs of compromised internal
hosts (if any), and use the IPs to match with the alert dataset.
The mapping is further constrained by the timestamp (i.e.,
the same day). In addition to alerts related to these true at-
tacks, we also report other alerts triggered on the same day of
the attack to show the level of distraction that the SOC was
facing. For true attacks that happened after 2020 (after BHR
was implemented), we can also report the number of attack
attempts (blocked by BHR) during the attack day.

Out of the 11 true attacks, 7 true attacks have triggered
alerts. However, for one of them (case 1), the alerts (associ-
ated with the victim IP) were not directly related to the attack
itself. For cases 4 and 6, the incident reports suggest that
Zeek alerts were triggered but we cannot recover the exact



ID | Attack Info (Brief) ‘ # Related ‘ Alert How # of Benign | # of Attack ‘ # of Other | # of Total
Alerts Type | Detected? Triggers Attempts Alerts Alerts
1 | Acct. compromised; credentialleak | 2 | 1 |  User | 3168 | NA | 52329 | 55499
2 | Acct. compromised; scanning | 22 | 4 | Zeek | 19167 | NA | 144689 | 163,878
3 | Acct. compromised; data leak \ 0 | 0 | Other | 17993 | NA | 64966 | 82959
4 | Acct. compromised; spam | o0 | 0 | Zeek | 18330 | NA | 79215 | 97545
5 ‘ 0-day; scanning ‘ 18 ‘ 2 ‘ Zeek ‘ 19,401 ‘ N/A ‘ 104,735 ‘ 124,154
6 ‘ Acct. compromised; outbound SSH ‘ 0* ‘ 0* ‘ Zeek ‘ 0* ‘ N/A ‘ 0* ‘ 0*
7 | Acct. compromised; phishing \ 0 | 0 | User | 19037 | N/A | 115810 | 134847
8 | Acct. compromised; crypto mining | 0 | 0 | Other | 2958 | NA | 28480 | 31438
9 | Open port; DoS reflection | 12 | 0 | Zeek | 6,628 | 5,540 | 5766 | 17,946
10 ‘ Postgres compromise; scanning ‘ 1,101 ‘ 5 ‘ Zeek ‘ 7,093 ‘ 4,028 ‘ 5,617 ‘ 17,839
11 | Internal account crypto mining | 1 | 1 | Zeek | 14657 | 3947 | 6316 | 24921

+: the alert log is missing.
T: the alerts are triggered but are not relevant to the attack.

Table 8: Alert-Attack Association Results—True attacks between 2018 and 2022. We briefly describe how the attacker breaks in and the
attacker’s actions after the compromise. We report related alerts triggered by the attack as well as other alerts triggered on the same day of the
attack (e.g., benign triggers, attack attempts) to show the level of distraction that the SOC was facing.
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Figure 13: Per-Host Alert Characteristics—We show the CDF plots of per-host behavioral metrics for internal hosts in the network. The

“stars” in the figure represent “true attacks.”

alerts due to missing log entries. A closer examination shows
these alerts were triggered mostly due to attackers’ activities
after the compromise, especially activities that involve net-
working (e.g., scanning, password guessing). On the contrary,
the alerts were ineffective if the attacker only stole a small
amount of data such as credentials and meeting notes (cases
1 and 3), or sent a small number of phishing emails (case
7). From the SOC’s perspective, valid accounts may log in
from networks outside of the organization (e.g., researchers
from other countries). This made it challenging to generate
alerts on account compromise if the user did not follow the
policy to enable 2FA. For the four attacks where Zeek alerts
were not triggered, they were found either by the account
owners/users (cases 1 and 7) or by other parties/tools, e.g.,
network admin mailing list (cases 3 and 8). To reduce false
negatives, we observe that SOC has been actively updating its
rules based on past attacks. For instance, in case 8, an existing
account was compromised which then installed crypto min-
ing programs to the computation servers. After the incident,
the SOC implemented new rules to alert on such behaviors.

Later in case 11, when an internal account was used to run
Bitcoin mining, an alert was successfully triggered to capture
it. Overall, as shown in Table 8, the number of alerts related
to the true attacks is much smaller in comparison with other
alerts (i.e., distractions) triggered on the same day. In the next
section (§7.2), we explore possible ways to distinguish true
attack alerts from other categories.

Remark 7: While excessive alerts (and false positives)
are problematic, false negatives are equally concerning.
More specifically, network-level alerts are highly limited in
capturing the initial host compromise or stealthy activities
after the compromise.

7.2 Comparing Different Alert Categories

Next, we explore behavioral statistics that may help to distin-
guish true attacks from the other alert categories. We focus
on individual internal hosts and plot a series of per-host be-
havioral metrics. We select the more distinguishing metrics in



Figure 13 and present the additional ones (e.g., alerts per day)
in the supplementary materials [78]. Given this analysis will
require connection logs (for victim IP recovery, see §6.3), we
only focus on the period of 2020-2022 (covering true attacks
9,10, 11).

Figure 13a shows the entropy of daily alert volume per host,
and Figure 13b shows the entropy of the alert sequence of a
host. A lower entropy means the data has a higher regularity
(i.e., more predictable). Recall that the true attacks (cases 9,
10, 11) each only lasted for one day, and thus we compute
their entropy based on the victim host’s recent daily alerts in
the past 10 days. As shown in Figure 13a, for “benign trigger”
and “unknown”, there are 45.7% and 70.4% of the hosts with
an entropy near 0. This is because these hosts did not have
corresponding alerts triggered on most days. In comparison,
almost all the internal hosts have encountered attack attempts
(over 99%). Overall, the attack attempts’ daily volume is more
random but their alert sequence is more predictable. This
makes sense since most attack attempts are related to scanning
and password guessing (§6.3). On the contrary, unknown and
benign trigger alerts are more unpredictable on alert sequence
but more stable on volume. For true attacks, case 10 is in the
outlier area for alert volume (Figure 13a) and both cases 10
and 11 are in the outlier area for alert sequence (Figure 13b).

Figure 13c further shows that true attacks tend to have more
rare combinations of alerts. Here, given a host and a date, we
compute a rareness score. This is done by first ranking all the
alerts based on their overall frequency in the data. Due to the
skewness of the frequency, we did not use the frequency value
as the rareness score but used the ranking as the normalized
score. A higher score value means the alert type is rarer. The
final rareness score is the sum of the score of each unique
alert on the host in a day. Figure 13c shows that all three true
attacks are located in the outlier area.

Remark 8: There are opportunities to use host-level abnor-
mal alert characteristics (e.g., rare combinations of alerts)
to identify and prioritize those that indicate true attacks.

7.3 Other Impact: New Rules at the SOC

Our analysis of the alerts and true attacks has led to the cre-
ation of new BHR rules at the SOC. Appendix B provides an
example of such rules regarding blocking HTTP basic access
authentication (based on the analysis of case 10).

8 Discussion and Conclusion

8.1 Implications to ML-Security Research

Our results have implications for active research directions
that develop ML-based security systems for SOC. More
specifically, getting access to real-world network data for
research has been historically difficult due to privacy and

legal complications [6, 29, 60]. As a result, researchers de-
veloped their ML models primarily based on public bench-
mark datasets with clearly labeled “benign” and “attack” traf-
fic [17, 19, 23,45, 50, 65, 73] and such attack traffic is of-
ten generated by simulated attacks on a controlled network.
Our analysis indicates that the problem may have been over-
simplified and should be revisited.

Impact of Attack Attempts and Bening Triggers. Most
existing models either train on benign traffic for anomaly
detection (semi-supervised or unsupervised) [13,33,50,52,68]
or train with benign and malicious traffic supervised attack
classification [35,36,79]. However, this problem formulation
may not cleanly match real-world data.

§6.2 shows that about 27.37% of the alerts (3.9 million)
represent the large number of “attack attempts” faced by the
network. The remaining alerts may contain (undetected) at-
tack attempts, and benign triggers (correctly matched security
events with a legitimate explanation). The network traffic
associated with “attack attempts” and “benign triggers” can
complicate the setup for ML models. On the one hand, the at-
tack attempts or benign triggers exhibit patterns of malicious
activities and should not be simply grouped into the “benign”
class. On the other hand, such attack attempts/benign triggers
did not actually manifest into successful attacks or cause dam-
age (i.e., should be ignored). If they are simply labeled to the
“malicious” class, it is possible the ML model would pick up
their patterns and produce even more irrelevant alerts. Alter-
natively, researchers may pre-filter network traffic associated
with attack attempts or benign triggers before training with
the data; however, the same treatment is needed during the
model deployment, which can be a challenge (§6).

Beyond Classifying Malicious from Benign.  Recently,
researchers have worked on ML tools to handle other tasks
in SOC such as correlating or ranking security alerts to iden-
tify true attacks [21,40, 61,75, 80]. We believe this type of
work is highly needed, given the excessive number of alerts
that SOC has (§6.1). At the same time, we notice key chal-
lenges through our analysis. First, to develop and evaluate
ML models for alert correlation, it would require the “ground
truth” of true attacks (specifically, successful attacks) that are
worth human attention. Unfortunately, the ground truth of
successful attacks is rare in comparison with the large volume
of alerts (e.g., 0.01% in our dataset). We notice that existing
benchmark datasets usually have more balanced attack-to-
benign ratios [17,65,73] because attacks are simulated within
concentrated time windows. Second, there are other prob-
lems beyond ranking alerts. For example, in §7, we show that
alerts may fail to fire during the initial compromise (i.e., false
negative problems) and there are opportunities to identify
attackers’ early attempts before the actual compromise to
deploy interventions.

Our Recommendations.  First, constructing more realistic
benchmark datasets by clearly defining the “true positives”.



Specifically, “attack attempts”, and “benign triggers” should
be distinguished from “successful attacks” in the data con-
struction and evaluation process. Second, proactively experi-
menting with noisy labels since attack attempts or benign trig-
gers may introduce inaccurate labels. Third, consider extreme
positive-to-negative ratios (e.g., 0.01%) in their evaluation.

Finally, researchers may consider nuanced problem defi-
nitions for ML. For example, one interesting direction is to
model the likelihood of attack attempts turning into real com-
promises based on their early signals. Another direction is
to improve alert generation by jointly modeling commonly-
appeared and rarely-appeared alert sequences for alert priori-
tization to identify true attacks.

8.2 Human Bottleneck vs. Automation

We show concrete evidence that human analysts are still the
bottleneck in the SOC pipeline. While automation helps, many
challenges remain to be addressed.

Post-attack analysis is time-consuming since it primarily
relies on human efforts. Post-attack investigation of one
true attack can take an average of 53 days. We show that an
investigation often involves more than one analyst (§5). A
particular issue noted in our analysis is the difficulty to link
different logs to attribute victims and recover attacker behav-
iors (§6.3). For instance, due to alert aggregation, network
scanning alerts may miss key metadata for victim IPs. Also,
certain large logs (e.g., network connection logs) may become
unavailable as they will be deleted periodically due to limited
storage space.

Automated alert handling reduces human workload, but
reasoning the remaining alerts is still challenging. We
confirm that the SOC is faced with a large number of alerts
(24K-134K daily for our dataset). It is possible for the SOC
to use automated methods to handle a portion of the alerts
(44.9%) using high-confidence rules (BHR). There still re-
main a large number of alerts (about 13K per day) that may
require human attention. We demonstrate that these alerts can
be triggered by complex reasons. Benign triggers are a key
contributor to excessive alerts (49%), which confirms a prior
user study [4]. Compared with [4], we further show isolating
benign triggers is non-trivial due to the difficulty of extracting
contexts from logs and a lack of SOC documentation.

Our Recommendations:  First, to speed up the post-attack
investigation and improve the efficiency of analysts, SOCs
need efficient ways to store, link, and query different logs. Fu-
ture work may consider including key metadata (e.g., victim
IPs) in the alert log to make it easier to link alerts to other raw
logs (e.g., network connection logs, and even host logs). In
addition, future work may explore more storage-efficient log
representations such that historical logs can be stored for a
longer time.

Second, for benign trigger identification, our experience
(§6.4) shows that significant manual efforts are needed for
constructing and curating various allowlists. This process can
be potentially improved with more systematic asset manage-
ment, especially documentation of allowed exceptions. Future
work may also look into automated methods (e.g., machine
learning) to extract rules for benign trigger identification by
analyzing related logs and documents.

Third, for threat response, automatons are needed to han-
dle alerts, especially during off-hours when human analysts
have limited availability. Our analysis shows the promise of
investigating rare combinations of alerts or sequences to find
true attacks (see §7). Finally, large language models (LLM)
such as GPT-4 [55] and chatGPT [54] have demonstrated the
ability to assist humans with a variety of technical tasks (e.g.,
developing websites, debugging, and fixing bugs [62]). A pos-
sible direction is to train LLM-like foundation models to help
with threat response, guiding human analysts in investigating
alerts and taking action [48]. During off-hours, it might be
difficult for ML models to reason the attack automatically,
but it may be possible to contain the attack (e.g., and its dam-
age) before humans can investigate it. However, given the
limitations of such models [58], it is still an open question
regarding how to set the boundaries in the decision space.

8.3 Generalizability and Data Sharing.

Our dataset is collected from a single SOC, which may con-
tain biases due to the specific SOC size, type, and network
characteristics (§3). As a result, we want to be cautious about
result generalization. Certain results should be discussed con-
sidering the SOC-specific contexts. For example, we show
that attacks that occurred during the off-hours of the analysts
may lead to delayed response (§5). This observation may not
generalize to larger organizations with multiple SOC sites in
different time zones (where analysts take shifts 24/7), but can
be more serious for less resourceful SOCs. However, even
with these factors considered, we believe certain lessons from
our analysis have broader implications. For example, the issue
of “attack attempts” and “benign triggers” can produce mis-
leading labels for network traffic data for general ML models
(which has been largely overlooked by the research commu-
nity); the issue of information loss during log aggregation is
a generic challenge for threat response using NIDS; and the
use of rareness of alert combinations to inform filtering can
be explored in broader contexts.

To facilitate future research and result-reproduction, we
publish the code developed in the project, which is designed
for the highly popular Zeek log format. The code should work
for other network datasets formulated with Zeek. In addition,
we have worked with the SOC to release one-month alert
data during the month of the Postgres attack discussed in
§4. The dataset (see [78]) contains ground-truth labels for
true attacks, attack attempts, and benign triggers. For privacy



considerations, IP addresses or any network payload will not
be included in the dataset.
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A Detailed Analysis of Incident Reports

Qualitative Coding Method. Given that incident reports
are unstructured, we manually annotate the reports to extract
structured information for our analysis. The coding process in-
volves extracting structured data fields by reading the incident
reports and labeling the incident type. This is different from
a typical thematic coding process [47] (e.g., we don’t need
to develop a codebook, but instead rely on a pre-defined data
field list to perform annotation). Two researchers (who have
the domain knowledge and expertise) worked on the annota-
tion task, and both annotated all the reports. They frequently
met and discussed the results to resolve any disagreement
collaboratively along the process.

First, for each incident, we document the incident ID and
the timestamp of the incident, and verify the incident is indeed
a true attack. Here, true attacks are defined as those where the
attacker successfully compromised the system and/or caused
damages (see Table 1). For the true attacks, we extract fur-
ther information including the number of analysts involved
in the investigation, the attacker/victim IPs, attack start time
(1), attack detection time (#,), and investigation end time (#3).
Here, “attack start time” is the earliest timestamp of the at-
tacker activity that is directly associated with the compromise.
The determination was made by the SOC analysts who con-
ducted the investigation and wrote the report. Then we refer
to the MITRE Adversarial Tactics, Techniques, and Common
Knowledge (ATT&CK) Framework [51] to annotate the high-
level techniques used by the attacker. We focus on MITRE
tags that best describe (1) how the attacker broke into the
system, and (2) the consequences/activities after breaking in.
Here, we only seek to assign the most relevant ATT&CK tech-
nique to describe each attack, rather than trying to cover all
related techniques.
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Type of Attacks. Among the 227 true attacks, we can
assign MITRE techniques/tags to 220 attacks. For the 7 re-
maining attacks, we cannot find a MITRE technique that ac-
curately describes them, and thus we create two custom tags,
namely “DMCA hosting” and “internal policy violations.”
More details are reported in the supplementary materials [78].

Analysts Involved. 107 of the reports have clearly doc-
umented the analysts involved in the investigation. Using
this set, we plot Figure 14. It is more common for two or
more SOC analysts to investigate a single attack (65% of the
attacks).

Delay of Attack Detection. To examine how long it took
for the SOC to discover an attack, it requires two timestamps:
the attack start time and the attack discovery time. Out of the
227 reports, 96 of them contain both timestamps. We show
the delay of attack detection in Figure 15. The size of the cir-
cles represents the number of attacks in a given year. Overall,
most of the attack attacks were identified within the same day
(63/96, 66%). Since 2011, this has been true for almost all
attacks (except for one in 2018 which had a delay of one extra
day). Before 2011, the delay varied from 0 days to as long
as more than 300 days. We further analyze the attacks with
long detection delays and summarize representative reasons:
(1) attackers launched DDoS attacks to distract the SOC team
from discovering the actual compromise; (2) worms/malware
stayed hibernated for a while before launching attacks; (3)
attackers scanned the network extremely slowly; and (4) the
compromise was noticed by users or system admins acciden-
tally long after the attack. Most of these attacks happened
before 2011, which again correlates with the lack of logging
capability and the SOC’s understaffing problem before 2011.
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Category Identification Method

| Required Effort

Internal Scan

Manually compile a list of legit internal scanners; Match alerts with legit scanners’ IPs

‘ Semi-Automatic

External Pen-test

Manually map out known external security vendors’ IPs; Match alerts with these IPs

‘ Semi-Automatic

DNS (external domain name)
DNS (external DNS server)
DNS (excessive queries)

Manually document a list of internal projects that use external domain names; Add to allowlist
Manually document a list of internal projects with customized DNS configs; Add to allowlist
Filter based on alert type, and pattern (internal source IP querying internal DNS)

Manual
Manual
Automatic

SSL (week key)
SSL (week cipher)
SSL (old version)

Manually map out IPs of internal legacy systems; Match alert types, metadata, and IPs
Manually map out IPs of internal legacy systems; Match alert types, metadata, and IPs
Manually map out IPs of internal legacy systems; Match alert types, metadata, and IPs

Semi-Automatic
Semi-Automatic
Semi-Automatic

Non-Attack (logging failure)
Non-Attack (new IP space)
Non-Attack (new host added)

Match alert types

Match alert types; Manually confirm alert details
Match alert types; Manually confirm alert details

Automatic
Semi-automatic
Semi-automatic

Services w/ Exceptions Match alerts with allow-listed IPs

| Automatic

Table 9: Benign Triggers Identification— We describe how we identified the benign triggers in each category.

Attackers’ Local Time Analysis. In §5, we show that
more attacks started during the off-hours of the SOC (based
on the SOC’s local time). However, we cannot confirm
whether attackers were intentionally targeting the SOC’s off-
hours—one alternative explanation is attackers (especially
those located in a different time zone) just happened to start
during the SOC off-hours. To provide further insights, we
try to convert the attack start time based on the attacker IPs’
local time. Note that not all true attacks have identifiable
IPs and thus this analysis can only use a subset of the inci-
dent reports (71 attacks). To convert the attack start time, we
first obtain the attacker IP’s geolocation using the MaxMind
GeolP database [46], and then convert the timestamp to the
attacker IP’s local time zone. As shown in Figure 16, there are
slightly more attacks started between 8§ AM and 6 PM (i.e.,
the attackers’ local working hours). As such, it is possible
that some of the attackers’ local working hours happened to
overlap with the SOC’s off-hours. That said, one limitation
of this analysis is that we cannot ensure these IPs are the
attackers’ real IPs (e.g., attackers may connect to the SOC’s
network via other compromised external hosts or botnets).
This can only be interpreted as an estimation of the local time
of the directly connected attacker IPs.

B New Rules/Policies Added to SOC

Our analysis has led to the creation of new rules at the SOC.
As a concrete example, during our analysis of the Postgres
compromise (§4), we observed interesting patterns in the
alerts. More specifically, after the victim host D is compro-
mised, the attacker used the host to scan a large number of
external hosts and performed password guessing (which col-
lectively raised 1,100 alerts). Among the alerts, 1,069 were
related to HTTP basic access authentication. We observe that
all of the HTTP basic access authentication requests were
made to external hosts with the same username and password
encoded with Base64. We then searched this username and
password combination in our own alert dataset and found

another 3,377 alerts with the exact match. This indicates this
username-password has been used by other attackers to at-
tack the internal network too. By ranking all the usernames
and passwords used in such attack attempts in the alert log,
this identified username ranked number three (right behind
“admin” and the empty string “”). After discussing with SOC
analysts, new rules are added to the BHR to automatically
block such HTTP access authentication attempts based on the
alert type and known username and password combinations.

C Benign Triggers Detection Method

Using Table 9, we provide further details regarding the iden-
tification process of different benign triggers. As shown in
Table 9, the identification of benign triggers either requires
manually constructing an allowlist of IPs where certain alerts
are safe to ignore based on organizational context or by filter-
ing candidate alerts and manually confirming their legitimacy.
Most manual efforts are spent on obtaining such contexts
through additional inquiries to network administrators and
users, or within the SOC team. For example, identifying le-
gitimate internal scans and external penetration tests requires
the knowledge of trusted IP ranges of internal scanners and
third-party security vendors. Identifying DNS-related benign
triggers requires documenting and verifying the list of internal
and collaborative projects that have such violations (paired
with the allowlist of certain behavior patterns). Identifying
SSL-related benign triggers requires mapping out the IPs of
internal legacy systems and filtering certain alert types. Once
such allowlists are created and curated, the alert matching
process can be coded and executed automatically. Certain
benign triggers (such as “logging failures’) can be matched
based on the alert type alone, without manual efforts.
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